
Cui et al. Cell & Bioscience           (2025) 15:42  
https://doi.org/10.1186/s13578-025-01374-1

RESEARCH Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Cell & Bioscience

Shared and distinct peripheral blood 
immune cell landscape in MCTD, SLE, and pSS
Yanling Cui1†, Huina Zhang1†, Yaxuan Deng1,2†, Orion Fan1,2, Junbang Wang1, Zhonggang Xing1,2, 
Jianping Tang3*, Wenmin Zhu1*, Bangdong Gong3* and Yi Eve Sun1,2* 

Abstract 

Background  Mixed connective tissue disease (MCTD) is a rare autoimmune disease, and little is known about its 
pathogenesis. Furthermore, MCTD, systemic lupus erythematosus (SLE), and primary Sjögren’s syndrome (pSS) share 
many clinical, laboratory, and immunological manifestations. This overlap complicates early diagnosis and accurate 
treatment.

Methods  The transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) from MCTD patients was per-
formed using both bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) for the first time. Additionally, 
we applied MCTD scRNA-seq data, along with datasets from SLE (GSE135779) and pSS (GSE157278) from the Gene 
Expression Omnibus database, to characterize and compare the similarities and heterogeneity among MCTD, SLE, 
and pSS.

Results  We first resolved transcriptomic changes in peripheral blood immune cells of MCTD, and then revealed 
the shared and unique features among MCTD, SLE, and pSS. Analyses showed that the percentage of CD8+ effector 
T cells was increased, while mucosal-associated invariant T cells were decreased in all three diseases. Genes related 
to the ‘interferon (IFN) γ response’ and ‘IFN α response’ were significantly upregulated. SCENIC analysis revealed activa-
tion of STAT1 and IRF7 in disease states, targeting IFN-related genes. The IFN-II signaling network was notably elevated 
in all three diseases. Unique features of MCTD, SLE, and pSS were also identified.

Conclusion  We dissected the immune landscape of MCTD at single-cell resolution, providing new insights 
into the development of novel biomarkers and immunotherapies for MCTD. Furthermore, we offer insights 
into the transcriptomic similarities and heterogeneity across different autoimmune diseases, while highlighting pro-
spective therapeutic targets.
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Introduction
Autoimmune diseases (ADs) comprise at least 80 dif-
ferent illnesses, affecting approximately 5% to 8% of the 
global population. These conditions cause significant suf-
fering for patients and present a major socioeconomic 
challenge [1, 2]. They all share a common pathogenesis: 
an immune-mediated attack on the body’s own organs. 
However, there are currently no definitive cures for any 
of these diseases [3]. Despite numerous efforts to eluci-
date the underlying pathogenetic mechanisms, the prin-
cipal causes and effective treatments remain elusive, 
hampering targeted drug development.

Mixed connective tissue disease (MCTD) is a rare auto-
immune disease with a prevalence of 3.8 per 100,000 and 
a mean annual incidence of 2.1 per million, based on epi-
demiological data from Norway [4]. It is characterized by 
overlapping clinical features of systemic lupus erythema-
tosus (SLE), primary Sjögren’s syndrome (pSS), systemic 
sclerosis (SSc), polymyositis/dermatomyositis (PM/DM), 
and rheumatoid arthritis (RA), along with high titers of 
antibodies targeting U1 small nuclear ribonucleoprotein 
(U1 snRNP) in peripheral blood [5]. Additional distinct 
clinical features include Raynaud’s phenomenon (RP), 
puffy fingers, polyarthritis, myositis, lung involvement, 
and esophageal dysmotility. Recent studies have con-
firmed that MCTD is strongly associated with human 
leukocyte antigen (HLA), and the central pathogenetic 
role of anti-U1RNP autoantibodies has clearly emerged 
[4, 6]. However, due to low prevalence, little is known 
about the MCTD etiology and pathogenesis [7]. Conse-
quently, there is an urgent need to identify and develop 
potential therapeutic targets, which requires a deeper 
understanding of the underlying pathogenesis.

SLE and pSS are among the most common ADs. 
MCTD, SLE, and pSS share several clinical symptoms, 
serological profiles, and immunological characteristics 
[8]. Many MCTD patients may present with the same 
clinical manifestations as SLE, and SLE may also present 
with Sjögren’s syndrome (SS) comorbidity [9], including 
positive anti-SSA and anti-SSB antibodies [10]. These 
overlapping features hamper disease diagnosis, prog-
nosis estimations, and personalized treatment. Despite 
advancements in understanding the complexity of dis-
ease, such as recognizing its clinical heterogeneity [11, 
12], the pathogenesis remains poorly understood, and 
effective treatments are lacking. Peripheral blood mon-
onuclear cells (PBMCs) include various immune cells 
that are involved in immune activities and inflammatory 
responses [13]. Single-cell mRNA sequencing (scRNA-
seq) offers a powerful and unbiased approach to profile 
the cellular composition and specific transcriptional 
states of PBMCs [14, 15]. Delving into the shared and 
distinct peripheral immune cell atlas could further clarify 

the pathogenetic mechanisms and provide a biological 
basis for treating MCTD, SLE, and pSS.

This study provides a panoramic PBMCs map by 
combining bulk RNA sequencing (bulk RNA-seq) and 
scRNA-seq analyses, revealing changes in cell type pro-
portions, gene profiles, biological features, transcription 
factor (TF) activity, and cellular interactions involved in 
MCTD. The transcriptomics data presented here eluci-
dated mechanistic features and provided some insights 
into MCTD pathogenesis. To further understand the 
pathogenesis of MCTD, SLE, and pSS, several exist-
ing human scRNA-seq datasets were compared to con-
struct a comprehensive PBMC transcriptome. Both 
shared and distinct cell proportions and transcriptional 
changes among MCTD, SLE, and pSS were revealed. 
The proportions of CD8+ effector T cells were increased, 
while mucosal-associated invariant T (MAIT) cells were 
decreased in all three diseases. Upregulated interferon 
α (IFN α) and IFN γ responses were identified as shared 
transcriptomic characteristics across MCTD, SLE, and 
pSS. STAT1 and IRF7 might be shared core TFs involved 
in regulating the IFN responses. The IFN-II signaling net-
work was found to be highly enriched in MCTD, SLE and 
pSS. In addition, analyses also revealed the unique fea-
tures in MCTD, SLE, and pSS.

Altogether, these analyses help to characterize common 
mechanisms in the immunopathogenesis of MCTD, SLE, 
and pSS, and identify new potential therapeutic targets.

Materials and methods
Subjects
Patients were all recruited from the Department of 
Rheumatology and Immunology, Shanghai Tongji Hos-
pital. The inclusion criteria for MCTD patients were (1) 
age ≥ 18 years at the time of diagnosis; (2) a clinical diag-
nosis of MCTD verified by a rheumatologist; (3) a posi-
tive anti-U1RNP test; and (4) fulfillment of at least one 
of the three criteria sets for MCTD [4] (modified Sharps 
criteria, Alarcón-Segovia criteria or Kasukawa criteria). 
All the enrolled MCTD patients were treatment-naïve 
and had not receive glucocorticoid (GC) or immunosup-
pressant treatment before blood collection. Exclusion cri-
teria included active infection, a history of malignancy, 
lymphoma, or hematological diseases, the presence of 
other autoimmune diseases, pregnancy or lactation in 
females, and patients whom physicians recommended 
should not be included. The demographics and baseline 
disease characteristics are described in Supplementary 
Tables 1 and 2. SLE patients met the 2019 American Col-
lege of Rheumatology/European League Against Rheu-
matism (ACR/EULAR) classification criteria for SLE [16]. 
All pSS patients met the 2016 ACR/EULAR classification 
criteria [17]. The demographic characteristics, baseline 
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clinical characteristics, and previous treatment history of 
the patients are shown in Supplementary Tables 3 and 4. 
Patients aged 18 to 65  years were enrolled, and healthy 
donors within the same age range were recruited as 
healthy controls (HCs). All subjects underwent a physical 
examination and completed a questionnaire by trained 
doctors. This study was approved by the Ethics Commit-
tee of Shanghai Tongji Hospital (2019Hdx173). Written 
informed consents were obtained from all participants 
before enrollment.

Human blood acquisition
MCTD patients, SLE patients, pSS patients, and HCs 
were recruited in this study. Blood samples were obtained 
from patients and HCs and used for scRNA-seq or qPCR 
analysis. PBMCs were isolated using density gradient 
centrifugation with Ficoll-Paque ™ PLUS Media. The 
PBMCs were washed, counted and stored for subsequent 
experiments.

RNA isolation and quantitative real‑time reverse 
transcription PCR (qRT‑PCR)
Blood samples were obtained from HCs, MCTD patients, 
SLE patients, and pSS patients. Total RNA was extracted 
from peripheral blood using TRIzol LS (Invitrogen) 
according to the manufacturer’s instructions. RNA qual-
ity was assessed using NanoDrop spectrophotometer 
and an Agilent 2100 Bioanalyzer (Thermo Fisher Scien-
tific). RNA was reverse transcribed into cDNA using a 
reverse transcription kit (Vazyme, R323) according to the 
manufacturer’s specifications. Real-time PCR was per-
formed using 2 × Taq Pro Universal SYBR qPCR Master 
Mix (Vazyme, Q712) in ABI Prism 7300 Thermal Cycler 
(Applied Biosystems) on cDNA sample. Relative expres-
sion was determined by calculating the formula 2−ΔΔCt. 
The primers used for gene expression are listed in Sup-
plementary Table 5.

Bulk RNA sequencing (Bulk RNA‑seq)
Sequencing libraries were generated using the NEBNext® 
UltraTM RNA Library Prep Kit for Illumina® (NEB, 
USA) following the manufacturer’s recommendations. 
The libraries were sequenced on the Novaseq 6000 plat-
form (Illumina), generating 150 bp paired-end reads. Raw 
data in FASTQ format were first processed. After remov-
ing adapters, ploy-N tails, and low-quality reads, clean 
data were obtained and aligned to the human reference 
genome (GRCh38). We used the HISAT2-StringTie-
featureCounts-pipeline to process data [18, 19]. Gene 
expression levels were estimated by summarizing counts 
at the gene level.

Differential gene expression and functional enrichment 
analyses
Differential gene expression analysis was performed 
using the DESeq2 R package. P-values were adjusted 
using Benjamini and Hochberg’s approach to control 
the false discovery rate (FDR). Genes with adjusted 
p-values (FDR) < 0.05 and log2FC (fold change) ≥ 0.5 
were considered differentially expressed. Volcano plots 
were created using the ggplot2 R package to visualize 
the identified differentially expression genes (DEGs). 
Hallmark gene sets represented biological states or pro-
cesses derived from the Molecular Signatures Database 
(MSigDB) [20]. The “clusterProfiler” R package was 
used to conduct Gene ontology (GO) and Hallmark 
functional annotation analyses. Significantly enriched 
outcomes were identified based on p-values < 0.05.

Single cell RNA sequencing (scRNA‑seq)
PBMCs were quickly thawed at 37  °C and resus-
pended in RPMI-1640 supplemented with 10% FBS. 
Cells viability was determined using trypan blue stain-
ing, and samples with viable rates less than 70% were 
excluded. Single-cell capture and library construc-
tion were performed using the Chromium Single Cell 
5 ′ Library & Gel Bead kit (10 × Genomics) according 
to the manufacturer’s protocols. The cDNA librar-
ies were sequenced using the Illumina NovaSeq 6000 
platform. Raw sequencing data were processed using 
the CellRanger pipeline [21] and aligned to the human 
reference genome (GrCh38) to generate a raw unique 
molecular identifier (UMI) count matrix, which was 
converted into a Seurat object using the Seurat [22] R 
package.

scRNA‑seq data analysis
The preliminary cell-gene matrix was used for down-
stream analyses. The pipeline utilized to process the 
data was performed as follows: Briefly, cells with fewer 
than 200 genes and more than 10% mitochondria-
related genes were filtered out. Logarithmic normali-
zation of counts and selection of the top 3000 highly 
variable genes (HVGs) were performed using Seurat. 
R package scDblFinder was used to remove doublets, 
and the Harmony algorithm was applied to correct for 
batch effects. Principal component analysis (PCA) was 
conducted for dimension reduction, and the elbow plot 
function was used to determine the number of princi-
pal components (PCs) to use for clustering on an inte-
grated data matrix. Cells were then clustered using 
the FindNeighbors and FindClusters functions, and 
the resulting clusters were visualized using a uniform 
manifold approximation and projection (UMAP) plot. 
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Cell types were identified using classical marker genes 
and the SingleR algorithm [23], referring to the Monaco 
immune datasets.

Comparing immune cells proportion
For PBMCs, the proportion of immune cells for each 
cell type was calculated. The proportion for each sample 
was determined by dividing the number of cells of a par-
ticular cell type by the total number of cells. To identify 
changes in cell proportions between samples from differ-
ent groups, we performed Mann–Whitney U test on the 
proportions of each cell type across the groups. Only cell 
types with statistically significant differences (p < 0.05) in 
proportions were shown.

Differential gene expression, over‑representation analysis 
and score signature modules
To identify the DEGs across different cell types from 
PBMCs in patients with MCTD, SLE, and pSS, the 
FindMarker function (Logfc.threshold = 0.25, p < 0.05) 
in Seurat was used. Over-representation analysis of 
DEGs (logFC > 0.5 and adjusted p < 0.05) was performed 
using “clusterProfiler” with “HALLMARK” gene sets 
derived from MSigDB [20]. p < 0.05 was considered sig-
nificant. Signature module scores were calculated using 
the “AddModuleScore” function with default settings in 
Seurat. Briefly, for each cell, the score was defined as the 
average expression of the signature gene list minus the 
average expression of the corresponding control gene list 
[24]. The p-value for the comparison between two groups 
was calculated using the Wilcoxon rank test. Gene lists 
used for analysis were referenced from the MSigDB 
database.

Transcriptional regulation analysis
Single-cell regulatory network inference and clustering 
(SCENIC) was used to predict TFs and their correspond-
ing target genes, construct TF regulatory network mod-
ules (regulons), quantify the activity of each regulon in 
cells based on the expression of TFs and target genes in 
the regulon, and ultimately determine the transcriptional 
activity of TFs in different cells. SCENIC was executed 
from the raw counts and followed the recommended 
workflow by using default parameters [25]. The analysis 
involved a three-step process: GRNBoost, RcisTarget, 
and AUCell. For visualization, the scores of average regu-
lon activity (AUC) for each cell type were calculated, and 
a rank plot of regulons was drawn using ggplot2. Regu-
lon specificity scores (RSS) were calculated by the “cal-
cRSS” function from the SCENIC algorithm with default 
parameters. The network of regulons and their target 
genes was constructed using Cytoscape [26].

Cell–cell interaction analysis
CellChat was performed to identify and visualize cell–
cell interactions among distinct immune cells under 
different conditions. The official workflow was fol-
lowed to load the normalized counts from Seurat into 
CellChat and applied the standard preprocessing steps 
[27]. After creating CellChat objects, CellChatDB.
human was used as the database. Default parameters 
were then used to identify putative interaction pairs, 
and the results were displayed as circos plots. Cellular 
communications across different cell types were identi-
fied based on the gene expression of ligands in one cell 
subpopulation and expression of specific receptors in 
another cell subpopulation.

scRNA‑seq comparative analysis among MCTD, SLE 
and pSS
We analyzed the scRNA-seq dataset GSE157278 for 
PBMCs from 5 pSS patients and 5 HCs. Correspondingly, 
a matching scRNA-seq dataset GSE135779 for PBMCs 
from 5 adult SLE patients and 5 adult HCs was down-
loaded for further comparisons. The same pipeline was 
used to process both datasets. In brief, quality control 
was performed by filtering cells with nFeature_RNA > 200 
and percent.mt < 10. After normalization, the analysis 
was conducted on the top 3000 HVGs in each sample fol-
lowing variance-stabilizing transformation. Data integra-
tion was carried out using the Harmony function, scaling 
was done with the ScaleData function, and dimension 
reduction was performed with the RunPCA function. 
Finally, cell clustering was achieved using the FindNeigh-
bors and FindClusters functions.

Availability of data and materials
Public data used in this work are available from the NCBI 
Gene Expression Omnibus (GEO) under the Accession 
number GSE135779 and GSE157278. Other data sup-
porting the findings of this study are available from the 
corresponding author upon reasonable request.

Statistics analysis
All statistical analyses were performed using Prism 
(GraphPad, v.8.2.1) and R software (v.4.1.0). Statisti-
cal significance was assessed using the Mann–Whitney 
U test. Differences were considered significant when 
*p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.

Results
scRNA‑seq revealed altered PBMC composition in MCTD 
patients
To explore the immune responses in peripheral blood, 
blood samples from three MCTD patients and four 
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Fig. 1  Study design and single-cell transcriptomic profiling of PBMCs from MCTD and HCs. A Experimental design and data processing workflow. 
B The uniform manifold approximation and projection (UMAP) plot of single-cell profile for MCTD. Each cell type is distinguished by a different 
color. C Bar plot showing the proportions of cell types in each sample. D Box and whisker plot showing the fraction of cell types in MCTD and HCs. 
*p < 0.05
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HCs were obtained, and PBMCs were sorted and sub-
jected to scRNA-seq using the 10X Genomics Chro-
mium platform (Fig.  1A). After quality control and 
removal of hybrid transcriptomes (multiplets), the HCs 
PBMCs and MCTD PBMCs were combined and then 
corrected for batch effect. An atlas was constructed 
comprising 41,424 cells. Cluster analysis identified 15 
distinct cell types. Based on the expression of classical 
marker genes and the SingleR algorithm, these clus-
ters were designated as monocytes, B cells, NK cells, 
mucosal-associated invariant T (MAIT) cells, T regu-
latory cells (Treg), Gamma-delta (γδ) T cells, dendritic 
cells (DCs), megakaryocytes (Megak), CD4+ naïve T 
cells (CD4+ Tn), CD4+ memory T cells (CD4+ Tm), 
CD8+ naïve T cells (CD8+ Tn), CD8+ memory T cells 
(CD8+ Tm), CD8+ effector T cells (CD8+ Te), prolifer-
ating NK cells (prolif. NK) and plasmablasts (Supple-
mentary 1, Fig. 1B). The cell proportions in each sample 
were shown in Fig.  1C. The percentage of each cell 
type in each group is shown in Fig.  1D. A decrease in 
γδ T cells (p < 0.05) and an increase in CD8+ Te cells in 
MCTD patients were observed, although the latter did 
not reach statistical significance. The remaining sub-
sets were present in similar proportions across the two 
groups. Thus, scRNA-seq analysis revealed cell hetero-
geneity in MCTD.

MCTD patients were characterized by an elevated response 
to IFN
DEGs across all cell types in scRNA-seq between MCTD 
patients and HCs were identified, and gene functional 
analysis was conducted. Significantly upregulated genes 
in MCTD were associated with “IFN γ response”, “IFNα 
response”, “TNFα signaling via NF-κB”, and “hypoxia” 
(Fig.  2A). DEG analysis between MCTD and HCs was 
also performed using RNA-seq data. The volcano plot 
described the identified DEGs, and the bar plot showed 
the GO analysis results (Supplementary Fig.  2A, B). 
Echoing the scRNA-seq analysis results, genes related 
to “IFN γ response”, “IFN α response”, “TNFα signaling 
via NF-κB”, and “hypoxia” were upregulated. This find-
ing strongly indicated that IFN response and cytokine 
stimulus participated in MCTD development and pro-
gression. To visualize which pathways were significantly 
enriched in MCTD, gene module scores were calculated 
and displayed using scatter dot plot. Interestingly, genes 

related to “IFN γ response” and “IFN α response” were 
significantly highly expressed in MCTD patients (Fig. 2B, 
C). The cell types significantly enriched for these path-
ways were further visualized by displaying the scores on 
UMAP coordinates, as well as in grouped scatter dot 
plots for each cell type (Fig.  2D, E and Supplementary 
Fig. 2C, D). Notably, genes related to the ’IFN γ response’ 
and ’IFN α response’ were significantly highly expressed 
in monocytes from MCTD patients, suggesting that 
monocytes are one of the major cell types participating 
in IFN responses in MCTD. These results were consist-
ent with previous study [28]. Meanwhile, genes related 
to “TNFα signaling via NF-κB” and “hypoxia” showed an 
upregulated trend without significant differences (Sup-
plementary Fig. 3).

TF STAT1 and IRF7 could promote the IFN response
Given that the gene expression was significantly altered 
in all cell types, it was hypothesized that there might be 
some TFs acting as master regulators leading to immu-
nological alterations. SCENIC was used to map the gene 
regulatory networks and identify potential TF. Group-
specific regulons were analyzed using the regulon speci-
ficity score (RSS) and regulon activity was assessed with 
AUCell in each cell type (Fig.  3A, B). The activities of 
STAT1 and IRF7 were increased in MCTD across all cell 
types, particularly in monocytes. The expression levels 
of STAT1 and IRF7 motifs were also elevated in each cell 
type (Fig.  3C). Furthermore, regulatory network analy-
ses were conducted to identify target genes (Fig.  3D). 
The GO terms for the target genes were predominantly 
related to IFN response, including “response to type I 
IFN” and “response to IFN α/β” (Fig. 3E). This suggested 
that IFN responses were upregulated in the peripheral 
immune system in MCTD patients, driven by increased 
activities of the regulons STAT1 and IRF7, which are the 
putative master TFs for type I and III IFN signaling [29].

Communication among immune cells
Excluding cell-intrinsic information, scRNA-seq can also 
indicate putative cell-extrinsic interactions by integrating 
ligand and receptor information. CellChat was utilized 
to investigate the putative interactions between immune 
cells in MCTD versus HCs. Global cell-to-cell com-
munication networks among the 15 immune cell types 
were established by counting the number and strength 

Fig. 2  Differential gene expression and over-representation analysis between MCTD and HCs. A Over-representation analysis of HALLMARK gene 
sets for each cell type’s DEGs in MCTD and HCs. Scatter dot plot depicting B “IFN γ response” expression score and C “IFN α response” expression 
score between MCTD and HCs. D Scatter dot plot depicting the “IFN γ response” expression score of each cell type between MCTD and HCs. E 
UMAP visualization colored by the “IFN α response” expression score between MCTD and HCs

(See figure on next page.)
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of interactions based on ligand-receptor pairs in MCTD 
and HCs, respectively (Supplementary 4B, 4C), which 
were increased in the MCTD group (Supplementary 4A). 
Many significant ligand–receptor pairs were detected 
among the 15 cell types. Circos plots were used to visu-
alize specific interactions among the 15-cell group. The 
results showed increased activity in pathways, includ-
ing CD70, IFN-II, and TNF, uniquely in MCTD patients 
(Fig.  3F). Furthermore, monocytes were prominently 
influenced by the IFN-II signaling pathway (primarily 
IFN γ-IFN γ R1/R2). The CD4+ Tn, CD4+ Tm, CD8+ Tn, 
and CD8+ Tm cells exhibited the properties of target cells 
(receiver), while the prolif. NK cells acted as source cells 
(sender) in the CD70 signaling pathway. Monocytes were 
presented the dominant source cells (sender) of the TNF 
signaling pathway. These findings were consistent with 
the previously observed biological features in MCTD.

Immune cell heterogeneity in MCTD, SLE, and pSS
To understand immune cell heterogeneity in patients 
with ADs, scRNA-seq datasets for PBMCs from SLE and 
pSS patients were downloaded from the GEO database 
for further comparisons. Since the GSE157278 dataset 
included 5 pSS patients and 5 normal controls, 5 HCs 
and 5 SLE patients were selected from the GSE135779 
dataset (Fig.  4A). The datasets were divided into sub-
set (18,000 cells in HCs, set.seed = 3) and an integrated 
analysis was performed to merge the HCs data with the 
MCTD, SLE, and pSS datasets using the Seurat package 
integration pipeline (Fig. 4B). Cell type proportions were 
estimated across disease groups. CD8+ Tn cells were 
significantly reduced in pSS patients, while a significant 
decrease in B cells and an increase in CD8+ Te cells were 
observed in SLE patients. MAIT cells were significantly 
decreased in both MCTD and SLE patients, whereas γδ T 
cells were significantly reduced in MCTD patients com-
pared to HCs (Fig. 4C). Interestingly, CD8+ Te cells were 
expanded in MCTD and pSS patients, while MAIT cells 
were decreased in pSS patients relative to HCs. Addition-
ally, CD4+ Tn cells were reduced in both SLE and pSS 
patients (Fig.  4C). However, possibly due to the small 
sample size, these trends were not statistically significant. 
Therefore, after normalizing the data, we combined the 
disease groups and examined the changes in cell propor-
tions (Fig. 4D). CD8+ Te cells were markedly expanded, 
while MAIT cells were decreased in MCTD, SLE, and 

pSS patients relative to HCs. Additionally, CD4+ Tn 
cells were also reduced in SLE and pSS patients. In sum-
mary, MCTD, SLE, and pSS shared common changes in 
immune cell composition, including an increased pro-
portion of CD8+ Te cells and a decreased proportion of 
MAIT cells. A reduction in CD4+ Tn cells was a com-
mon change observed in both SLE and pSS. Meanwhile, 
the decreased proportion of γδ T cells, B cells, and CD8+ 
Tn cells was distinctly characteristic of MCTD, SLE, and 
pSS, respectively (Fig. 4E).

Identification of shared and distinct biological features 
in MCTD, SLE, and pSS
To understand the shared and distinct biological features 
in patients with ADs, DEGs for each immune cell type 
were screened between the SLE group and HCs group, as 
well as between the pSS group and the HCs group, and 
gene functional analyses were conducted accordingly. 
Genes related to “TNFα signaling via NF-κB”, “IFN γ 
response”, “IFN α response”, and “hypoxia” were upregu-
lated in the SLE group compared to the HCs group (Sup-
plementary Fig. 5A). Compared to the HCs group, genes 
related to “IFN γ response” and “IFN α response” in the 
pSS group were increased, while genes related to “TNFα 
signaling via NF-κB”, “hypoxia”, and “TGFβ signaling” 
pathways were decreased (Supplementary Fig.  5B). To 
evaluate the significance and visualize which cell types 
were enriched for these signatures, gene module scor-
ing was performed in the groups and the scores were 
displayed using heatmaps and scatter dot plots. Genes 
related to “IFN γ response”, “IFN α response”, “TNFα 
signaling via NF-κB” and “hypoxia” (Fig. 5A, Supplemen-
tary Fig. 6A, B) were highly expressed in the SLE patients. 
In pSS patients, genes related to “IFN γ response” and 
“IFN α response” were upregulated (Fig. 5B, Supplemen-
tary Fig.  6C). In contrast, genes related to “TNFα sign-
aling via NF-κB” and “hypoxia” were downregulated in 
the pSS group (Fig. 5B, Supplementary 6D). Additionally, 
“TGFβ signaling” related genes were also downregulated 
(Fig. 5B, Supplementary 6E). Collectively, genes related to 
“IFN γ response” and “IFN α response” were commonly 
upregulated in MCTD, SLE, and pSS. These results con-
firm the vital roles of IFN in the pathogenesis of AD [28, 
30–34]. Genes related to “TNFα signaling via NF-κB” and 
“hypoxia” were significantly increased or decreased in 
SLE or pSS, respectively, while showing an upregulated 

(See figure on next page.)
Fig. 3  The gene regulatory networks and intercellular communications between MCTD and HCs. A The regulon specificity score (RSS) of regulons 
between MCTD and HCs. B The AUCell scored the activity of regulons in each cell type between MCTD and HCs. C Violin plot of TF motif expression 
levels in each cell type between MCTD and HCs. D Network of regulons and their target genes. Red indicates TFs and purple indicates target genes. 
E Gene functional annotation of the TF target genes. F Circle plots showing the uniquely increased signaling pathway network in MCTD
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trend in MCTD (Fig. 5C, D). Additionally, the downregu-
lation of “TGFβ signaling” related genes was a character-
istic of pSS [35, 36] (Fig. 5D, E).

Common TFs were responsive to the biological features 
in MCTD, SLE, and pSS
To elucidate TFs acting on gene enrichment in ADs, 
SCENIC was used to map the gene regulatory networks 
governing different diseases and to identify potential TFs 
modulating DEGs in these diseases. Regulon activities 
were scored using AUCell to assess the average enrich-
ment of all genes belonging to each regulon in each cell 
type, as well as across different groups. Shared regu-
lons in SLE and pSS diseases were identified by AUCell 
score as candidate TFs underlying the gene expression 
differences in different cells, as discussed in our previ-
ous article [37]. The activities of STAT1 and IRF7 were 
upregulated mainly in monocyte from both SLE and pSS 
patients [37]. RT-qPCR was further employed to measure 
the relative mRNA expression levels of STAT1 and IRF7. 
Both STAT1 and IRF7 were significantly upregulated in 
MCTD, SLE, and pSS (Fig. 6C). Overall, the upregulation 
of STAT1 and IRF7 in monocytes was a shared feature 
among MCTD, SLE, and pSS (Fig.  6D). These analyses 
identified the upstream regulons driving cell-type-spe-
cific state transitions toward disease.

Cell‑extrinsic interactions in MCTD, SLE, and pSS
CellChat was used to investigate potential interactions 
between immune cells in SLE compared to HCs, as well 
as in pSS compared to HCs. Some signaling pathways 
activities were upregulated, including IFN-II, CD40, and 
CD86, uniquely in SLE patients (Fig. 6A). Meanwhile, the 
IFN-II, CD40, and BTLA (B- and T-lymphocyte attenua-
tor) signaling pathways were uniquely upregulated in pSS 
patients (Fig.  6B). Interestingly, monocytes also exhib-
ited the properties of target cells (receivers) in the IFN-II 
signaling pathway across MCTD, SLE, and pSS patients. 
The CD40 signaling pathway, with CD4+ Tm cells as the 
source cells targeting monocytes, was a shared feature 
in both SLE and pSS. The upregulated CD86 and BTLA 
signaling pathways were distinctly characteristic of SLE 
and pSS, respectively (Fig. 6D).

Discussion
MCTD is an uncommon connective tissue disease char-
acterized by the presence of anti-U1RNP antibodies. This 
study aimed to understand the cellular transcriptional 
changes in MCTD patients. It is the first to create a high-
resolution atlas and systematically discuss the cellular 
heterogeneity in MCTD patients. The scRNA-seq was 
performed on PBMCs, followed by cell type annotation; 
DEGs and biological feature analyses; as well as gene reg-
ulatory network and cell–cell communication analyses. 
At this resolution, 15 cell types were identified, and CD8+ 
effector T cells were expanded while γδ T cells were sig-
nificantly decreased in MCTD patients. “IFN γ response” 
and “IFN α response” related genes were significantly ele-
vated in MCTD patients, particularly in monocytes. SCE-
NIC analysis provided clues for identifying candidate TFs 
involved in monocyte dysfunction. Cell communication 
analysis also offered novel insights into the pathogenesis 
of MCTD. In summary, this work presents a comprehen-
sive single-cell transcriptome atlas for MCTD, contribut-
ing to a more detailed understanding of its pathogenesis 
and offering new insights into potential diagnostic bio-
markers for prospective therapeutic interventions.

MCTD, SLE, and pSS are complex autoimmune dis-
eases. The immune cell dysfunctions and abnormal 
signaling molecules still require further mechanistic 
examination and validation. The scRNA-seq analysis of 
PBMCs from MCTD, SLE, and pSS patients, as well as 
HCs, allows for the first unbiased, de novo identification 
of distinct cell types for all three ADs. This study, iden-
tifying cell subtype alterations, biological features, gene 
regulatory networks, and cellular interactions, provides 
system-level insights based on molecular data (Fig.  6E). 
These analyses helped clarify the role of shared and dis-
tinct immune cell types in the pathogenesis of MCTD, 
SLE, and pSS, which may guide the discovery for pro-
spective drug targets for these conditions.

In this study, elevated CD8+ effector T cells and a 
decrease in MAIT cells were common in MCTD, SLE, 
and pSS. CD4+ naïve T cells were reduced in both SLE 
and pSS. The decreased proportions of γδ T cells, B 
cells, and CD8+ naïve T cells were characteristic of 
MCTD, SLE, and pSS, respectively. These findings align 
with prior research on SLE and pSS. Some studies have 
shown that, compared with HCs, the proportion of B 

Fig. 4  Single-cell transcriptional landscape of MCTD, SLE, and pSS. A Experimental design and workflow of the study. B UMAP embedding 
of the entire dataset colored by generated clusters, labelled by cell type annotation and split by each AD as well as HCs. C Box plot showing 
the fraction of cell types in MCTD, SLE, and pSS. D Percentages of specific immune cell subtypes in total PBMCs from each individual. p values were 
calculated using the Mann–Whitney U test for comparisons between HCs and disease groups. *p < 0.05, **p < 0.01, ***p < 0.001. E Venn diagram 
of shared and distinct changes in cell proportions among MCTD, SLE, and pSS

(See figure on next page.)
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cells and CD4+ T cells was sharply decreased, while the 
proportion of CD8+ T cells and cytotoxic T cells (CD8+ 
CD28+) was prominently higher in SLE patients [38–40]. 

A reduction in naïve CD4+ T cells and an increase in 
repertoire-restricted GZMH+ CD8+ T cells have been 
observed in PBMCs from SLE patients [41]. MAIT cells, 
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which contribute to protection against certain microor-
ganism infections and play an important role in mucosal 
immunity, have been observed numerically and function-
ally deficient in cases of SLE [42]. Previous studies have 
also demonstrated that the peripheral CD4+ T cells were 
decreased in pSS patients. Abnormal proliferation of 
CD8+ T lymphocytes can be detected in the peripheral 
circulation and specific target tissues from pSS patients 
[43, 44]. Further understanding of the pathogenic or reg-
ulatory effects of activated CD8+ T subsets is expected to 
provide effective treatments for pSS patients in the future 
[45]. In PBMCs from pSS patients, MAIT cells have been 
observed as both reduced and functionally immature 
[46]. In summary, this research established the shared 
and distinct characteristics of peripheral blood immune 
cell proportions in MCTD, SLE, and pSS, concurring 
with previous findings.

There was significant overlap in the biological features 
of MCTD, SLE, and pSS observed in this study. In the 
over-representation analysis, the DEGs in MCTD, SLE, 
and pSS were enriched in identical pathways, mainly 
the IFN γ response and IFN α response. Type I IFN 
and IFN γ are pleiotropic cytokines that act as a bridge 
between innate and adaptive immunity, playing crucial 
roles in immunity and inflammation regulation [47, 48]. 
They contribute to ADs by supporting antigen presenta-
tion; regulating DC maturation and macrophage activa-
tion; as well as inducing the expression of chemokines, 
cytokines, and inflammatory factors and so on [34, 49]. 
To date, numerous studies have focused on the patho-
genic role of IFNs in ADs. Serum levels of IFN-α/-β/-γ 
were increased in MCTD patients, and genetic variants 
of IFN-α and IFN-γ have shown significant association 
with the occurrence of MCTD [28, 50]. Decreased DNA 
methylation in MCTD patients compared with controls 
has been identified in genes that are transcriptionally 
responsive to IFN or type I IFN pathways [51]. Until now, 
there has been no published single-cell transcriptional 
profiling for MCTD. The results here further confirm the 
pathogenicity of IFN genes in MCTD at single-cell tran-
scriptome level, and support the potential of IFN genes 
as candidates for MCTD susceptibility. Several lines of 
evidence have emphasized the roles for type I and type II 
IFN in the pathogenesis of SLE and pSS [30, 32–34, 52–
54]. The findings from this study align with prior research 

on SLE and pSS. Anifrolumab, a human monoclonal anti-
body targeting type I IFN receptor subunit 1, is currently 
authorized for moderate-to-severe SLE [55, 56]. IFN α 
kinoid (IFN-K) has been shown to induce neutralizing 
anti-IFN-α2b antibodies and significantly reduce the IFN 
signature with acceptable safety in active adult SLE [57]. 
Taken together, the results presented here strongly sup-
port the notion that IFN-related genes could serve as 
potential therapeutic targets for MCTD, SLE, and pSS.

Monocytes are pivotal in promoting and regulating 
inflammation in SLE. The scRNA-seq datasets revealed 
disease activity-dependent expansion of SLE-specific 
monocyte subsets and supported the IFN signature 
for classic monocytes [58]. There are three biomark-
ers (IFI30, BLVRA, and RIN2) that are involved in IFN-
related signaling pathways and act as SLE-associated 
biomarkers of monocytes [59]. Monocytes are hyper-
responsive to stimulation of the IFN related genes, and 
play a critical role in the pathogenesis of pSS [60, 61]. 
An increased proportion of CD226 on CD14+ mono-
cytes was associated with the clinical manifestations, 
disease activity, and prognosis of pSS patients. CD226+ 
CD14+ monocytes may present a potential target and a 
biomarker for the prognosis and therapy of pSS patients 
[62]. Based on the study results, we inferred that mono-
cytes may play a pivotal role in the pathogenesis of 
MCTD, which requires further validation.

The transcriptional regulatory analysis identified sev-
eral TFs that are highly related to the pathogenesis 
of MCTD, SLE, and pSS. Increased STAT1 and IRF7 
activities in monocytes were shared across the MCTD, 
SLE, and pSS. Combined with the regulatory network 
described results described in previous results, these 
shared TF target genes related to IFN response. The 
results suggest that MCTD shares the same IFN signature 
as SLE and pSS. Numerous studies have demonstrated 
that the signal transducer and activator of transcrip-
tion (STAT) families and IFN regulatory factor (IRF) 
play vital roles in IFN response [63]. The Janus kinase/
signal transduction and activator of transcription (JAK/
STAT) signaling pathway drives diverse immune regu-
latory processes, including cell proliferation, survival, 
inflammation, and immune tolerance. Aberrant JAK/
STAT transduction jeopardizes immune balance and 
contributes to the ADs development [64–66]. Tofacitinib 

Fig. 6  The comparison of TFs and signaling pathways among MCTD, SLE, and pSS. Circle plots showing the uniquely increased signaling pathway 
network in A SLE and B pSS. C The relative mRNA expression levels of STAT1 and IRF7 in MCTD, SLE, and pSS. D Venn diagram showing the shared 
and distinct cellular interaction signaling pathways and TFs among the three diseases. Magenta indicates cellular interaction signaling, and red 
indicates TFs. E Schematic diagram illustrating the shared and distinct changes in peripheral blood immune status characteristics among MCTD, 
SLE, and pSS

(See figure on next page.)
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is a selective inhibitor of JAK1 and/or JAK3. It can target 
the synovial JAK/STAT signaling pathway in RA, reduc-
ing the expression of matrix metalloproteinases (MMPs) 
and IFN-regulated genes in synovial cells [67]. A previ-
ous study confirmed that tofacitinib partially improved 
arthritis and rash in patients with SLE [68]. Some stud-
ies also suggested that tofacitinib could be used as an 
anti-inflammatory and antifibrotic agent in pSS patients, 
showing potential for the treatment of pSS-associated 
interstitial lung disease (ILD) [69, 70]. The results here 
indicate that tofacitinib might also be an effective drug 
for MCTD patients. As JAK substrates and type I/II 
cytokine receptors downstream, STATs have been stud-
ied as attractive targets for the treatment of inflamma-
tion, autoimmunity, and malignancies. Unfortunately, 
most STAT inhibitors are still in preclinical development, 
and few have been approved for clinical application 
due to issues with bioavailability and selectivity. A large 
number of clinical trials are currently underway, target-
ing STATs both as monotherapy or combination therapy, 
providing an attractive drug target [64]. IRFs can induce 
the expression of IFN-stimulated genes, either dependent 
or independent of JAK-STAT signaling. IRF7 has been 
found to be pivotal in SLE and pSS [71, 72]. The results of 
this study further confirm the role of IRF7 in the patho-
genesis of SLE and pSS, in addition to MCTD.

The study aimed to investigate cellular commu-
nication within PBMCs through ligand-receptor 
interactions, which revealed an increased IFN-II sign-
aling network, with monocytes as the recipient cells 
in MCTD, SLE, and pSS. The findings were consistent 
with the DEGs over-representation and transcriptional 
regulatory analyses. The CD40 signaling pathway net-
work was most enriched from CD4+ memory T cells 
to monocytes in both SLE and pSS. The CD40 recep-
tor and its ligand, CD40L, are among the most criti-
cal molecular pairs of the stimulatory immune 
checkpoints. Due to its essential role in immune activa-
tion, CD40/CD40L interaction has been regarded as an 
attractive immunotherapy target [73]. Both CD4+ and 
CD8+ cells from SLE patients have shown upregulated 
CD40L expression [74, 75]. A number of anti-CD40L 
and anti-CD40 drugs (antibodies), with a variety of bio-
logical effects, are in clinical trials for ADs treatment. 
Iscalimab, a CD40-targeted antagonist, is undergoing 
multiple clinical trials in SLE and Sjögren’s syndrome 
[76]. Dapirolizumab, a CD40L antagonistic monoclonal 
antibody (mAb), showed potential efficacy in a phase 1 
trial with SLE patients, particularly with high disease 
activity [77]. The results here confirm that CD40 and 
CD40L may be potent drug targets not only in SLE but 
also in pSS. CD70 and CD27 constitute a ligand-recep-
tor pair within the TNF ligand and receptor family, 

which plays a major role in T-cell co-stimulation. CD70 
has been shown to be highly abundant in CD4+ T cells 
from RA [78] and SLE patients [79]. Increased CD27/
CD70 signaling has also been reported in myasthe-
nia gravis (MG) patients [80]. The results of this study 
showed that the CD70 signaling network was highly 
enriched in MCTD. Anti-CD70 mAb have been shown 
to reduce T-cell-dependent colitis [81] and ameliorate 
bone and cartilage destruction in collagen-induced 
arthritis [82], suggesting that CD70 may be a viable tar-
get for immune intervention. The CD80/CD86-CD28 
costimulatory signals play an important role in the 
SLE occurrence and development. Excessive expres-
sion of CD80 and CD86 molecules has been observed 
on freshly isolated B cells in SLE patients [83]. The 
CD86 signaling pathway (CD86-CD28) was observed to 
be enriched in SLE, which is consistent with the pre-
vious reports. An anti-CD80 mAb has been employed 
to inhibit immune response and attenuate severity 
of a murine lupus model [84]. A mAb against human 
CD86(1D1) has been developed which could prevent 
the development of chronic graft-versus-host disease 
(cGVHD)-induced lupus [85]. BTLA, which belongs to 
the CD28 superfamily, is an immuno-inhibitory recep-
tor with the ability to suppress lymphocyte activation. 
The BTLA ligand, herpesvirus entry mediator (HVEM), 
is a member of the tumor necrosis factor receptor 
(TNFR) superfamily. Increased expression of BTLA has 
been reported in T lymphocytes from RA patients [86]. 
Additionally, PBMCs from RA patients showed high 
surface expression of HVEM [87]. This study revealed 
that BTLA signaling network was enriched in pSS. The 
BTLA-HVEM complex may be another immune check-
point that could be targeted for the ADs treatment and 
warrants further investigation.

Additionally, this study has several limitations. First, 
the sample size is limited. The etiology of MCTD is com-
plex, and significant individual differences exist among 
MCTD patients, which warrant further investigation 
in large-scale studies. Second, the analysis results are 
speculative, and further experimental research, includ-
ing immunoblotting, is needed to confirm these findings. 
Finally, the potential relationship between monocytes 
and disease phenotypes requires further validation, 
which will be the focus of our future work.

In conclusion, this study conducted scRNA-seq analy-
ses of diverse autoimmune diseases (MCTD, SLE, and 
pSS) using our transcriptome sequencing and GEO 
datasets. The results demonstrated shared and distinct 
alterations in cell subtypes, abnormal biological fea-
tures, changes in TF activities, and cell communica-
tion networks across the three diseases. This provides a 
system-level understanding based on molecular data. 
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These findings help clarify the role of immune cells in 
the pathogenesis of MCTD, SLE, and pSS, and highlight 
potential targets for treating these conditions.
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