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Abstract
The telomerase complex consists of a protein component (TERT), which has reverse transcriptase activity, and 
an RNA component (TERC), which serves as a template for telomere synthesis. Evidence is rapidly accumulating 
regarding the non-canonical functions of these components in both normal or diseased cells. An oligonucleotide-
based drug, the first telomerase inhibitor, secured FDA approval in June 2024. We recently summarized the 
non-canonical functions of TERT in viral infections and cancer. In this review, we expand on these non-canonical 
functions of TERC beyond telomere maintenance. Specifically, we explore TERC’s roles in cellular aging and 
senescence, immune regulation, genetic diseases, human cancer, as well as involvement in viral infections and 
host interactions. Finally, we discuss a transcription product of telomere repeats, TERRA, and explore strategies for 
targeting TERC as a therapeutic approach.
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Introduction
Telomerase is a ribonucleoprotein polymerase (RNP) 
consisting of a protein component, TERT (1,132 amino 
acids, 127 kDa), which has reverse transcriptase activity, 
and an RNA component, TERC (also known as Telomer-
ase RNA Component or TR), which serves as a template 
for telomere repeats (Fig.  1) [1, 2]. Initially discovered 
in Tetrahymena extracts, telomerase was described as 
a specific telomere terminal transferase involved in the 
de novo elongation of telomeric repeats. The human 
telomerase was first identified in 1989, and its function 
is to add the TTAGGG sequence to the ends of telo-
meres [3, 4]. In addition to the highly conserved TERT 
and TERC components, several telomerase-associated 
proteins are required for the functional telomerase com-
plex. These include Ku, HSP90, telomerase-associated 
protein 1 (TP1), dyskerin (DKC1), telomerase Cajal body 
protein 1 (TCAB1), non-histone chromosome protein 
2 (NHP2), nucleolar protein 10 (NOP10), and GAR1 
RNP (GAR1) [5–7]. During early human development, 
telomerase is active, but its activity becomes silenced 
between 12 and 18 weeks of gestation, remaining low in 
somatic cells thereafter. In contrast, most cancer cells 
and stem cells exhibit relatively high telomerase activity 
[8–11]. While the mechanisms behind the activation or 
silencing of telomerase remain to be fully explored, it is 
widely accepted that there is a direct correlation between 
TERT expression and telomerase activity, as the TERC 

component and telomerase-associated proteins are ubiq-
uitously expressed in most human somatic cells [12, 13]. 
Over the years, research has focused on TERT promoter 
mutations, gene copy number changes, epigenetic regula-
tion, and transcriptional and post-transcriptional modi-
fications to elucidate the mechanisms behind the switch 
in telomerase activity [14–22]. It has also been reported 
that TERC has effects on normal cell biology and disease 
progression [3, 23, 24].

Substantial research has focused on the role of telomer-
ase in aging, cancer, and disease. Notably, 85% of cancer 
cells show telomerase activity, highlighting the therapeu-
tic potential of targeting telomerase [9, 25, 26]. Activation 
of telomerase may also benefit patients with degenera-
tive diseases [27]. However, beyond its canonical role in 
telomere maintenance, many non-canonical functions of 
telomerase have been discovered, including its involve-
ment in the regulation of DNA replication and repair, 
gene expression, and cell signaling pathways. These non-
canonical functions may contribute to cell cycle progres-
sion, survival, proliferation, differentiation, apoptosis, 
metabolism, regeneration, and tumorigenesis [22, 28, 
29]. Evidence supporting the independent non-canonical 
roles of TERT and TERC is rapidly increasing [30–32]. 
For example, quantitative assays for TERT, TERC, and 
telomerase complexes in HEK293 and HeLa cells reveal 
approximately 240 telomerase complexes per cell, a 
number significantly lower than the copies of TERT and 

Fig. 1 Canonical functions of TERT and TERC. Schematic illustration of the TERC structure and its role in the human telomerase ribonucleoprotein com-
plex, which includes TERT, NOP10, dyskerin, GAR1, NHP2, and TCAB1. TERC provides the template (3’-CAAUCCCAAUC-5’) for hTERT to extend the telomere 
by adding TTAGGG DNA repeats. The H/ACA box recruits two sets of H/ACA-box-binding proteins, including NOP10, dyskerin, GAR1, and NHP2. TCAB1 is 
recruited through its binding with TERC and the H/ACA-box-binding proteins
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TERC. TERC levels often exceed the number of assem-
bled telomerase RNP complexes in cancer cells (approxi-
mately 1,150 TERC molecules in HeLa cells, compared 
to only about 500 molecules of TERT), suggesting the 
existence of unassembled TERC [30]. Furthermore, the 
identification of 2,198 TERC-binding sites in the genome 
presents a substantial resource for studying the potential 
non-canonical functions of TERC [33]. There are reports 
of TERC’s alternative functions, independent of telomer-
ase activity, in regulating gene expression and signaling 
pathways, with subsequent effects on cell survival, apop-
tosis, inflammation, and cancer promotion [31, 32]. The 
discovery of TERC-53 has also opened new insights into 
the non-canonical functions of TERC [34, 35]. Together, 
these findings underscore the need for further research 
into the non-canonical functions of TERC in human cell 
proliferation, differentiation, and disease progression, 
with significant therapeutic potential.

Canonical functions of TERC, telomerase inhibitors
TERC is a non-coding RNA that serves as a template for 
telomere replication by telomerase, enabling the addition 
of TTAGGG repeats to maintain chromosomal stabil-
ity. Its canonical role is critical for preserving telomere 
integrity and ensuring genomic stability, particularly in 
rapidly dividing cells, such as cancer cells (Fig.  1) [36]. 
The dependency of telomerase on TERC for its function 
has made it a key target in cancer research. TERC’s role 
extends beyond elongating telomeres, as it also stabilizes 
telomerase and facilitates its recruitment to telomeres 
[37]. Zhao et al. demonstrated that the absence of TERC 
(Terc -/-) in embryonic stem cells led to progressive telo-
mere shortening and severe genomic instability across 
generations. Shortened telomeres disrupted heterochro-
matin, leading to the activation of retrotransposons like 
LINE1, which promoted mutations and structural varia-
tions, thus underscoring the essential function of TERC 
in maintaining genomic integrity through telomerase 
activity [38]. Telomerase inhibitors are designed to sup-
press the activity of telomerase, targeting either TERC, 
TERT, or other telomerase-associated proteins [39]. A 
prominent example is Imetelstat (GRN163L), an oligo-
nucleotide that binds to TERC, preventing its interac-
tion with TERT. By disrupting the canonical function of 
telomerase, Imetelstat leads to telomere shortening and 
ultimately triggers apoptosis or senescence in telomer-
ase-dependent cancer cells [40, 41]. In June 2024, the US 
FDA approved Imetelstat (now branded as Rytelo) for 
adults with low- to intermediate-risk myelodysplastic 
syndromes (MDS) and transfusion-dependent anemia 
who do not respond to erythropoiesis-stimulating agents 
(ESAs). This approval marked the first telomerase inhibi-
tor to secure FDA approval after 20 years and more than 
20 clinical trials across various cancers, including breast 

cancer, lung cancer, brain cancer, and leukemia [42, 43]. 
Another approach involves small-molecule inhibitors 
such as BIBR1532, which directly block the catalytic 
activity of TERT, impairing telomere elongation. Simi-
larly, stabilizing G-quadruplex structures at telomeres 
hinders telomerase access, indirectly affecting TERC’s 
template function [44]. However, these inhibitors face 
challenges, including potential toxicity to normal stem 
cells—where telomerase activity is essential—and the 
development of resistance mechanisms, such as activa-
tion of alternative lengthening of telomeres (ALT) path-
ways [39]. While initial clinical trials for solid tumors 
showed variable outcomes, promising results have been 
observed in hematological malignancies, such as myelo-
fibrosis, highlighting the therapeutic potential of target-
ing TERC in specific cancer contexts [45]. In addition to 
its canonical role in telomere elongation, TERC has been 
implicated in genome stability mechanisms [46]. Using 
a comparative genomic approach, researchers demon-
strated that TERC, as part of the telomerase complex, 
participates in a unique DNA double-strand break repair 
mechanism [46]. They identified TERC-ITSs (Interstitial 
Telomeric Sequences), which are sequences retrotran-
scribed from TERC RNA and flanked by telomeric-like 
repeats, inserted at break sites during vertebrate evolu-
tion. This process involves telomerase retrotranscrib-
ing its RNA template into DNA and integrating it into 
chromosomal loci via the non-homologous end-joining 
pathway. These findings highlight that, beyond elongat-
ing telomeres, TERC plays a broader role in maintaining 
genome integrity [46]. However, telomerase inhibitors 
targeting TERC could disrupt these repair mechanisms, 
potentially increasing genomic instability and rais-
ing critical considerations for therapeutic applications 
[47]. TERC has also been studied as a biomarker, with 
elevated levels associated with specific cancers, includ-
ing astrocytoma and gastric carcinomas [48]. Gazza-
niga and Blackburn further highlighted the dual role 
of TERC, demonstrating that its non-canonical func-
tion can protect immune cells from apoptosis indepen-
dent of telomerase activity. Their findings suggest that 
TERC contributes to immune regulation by mitigating 
apoptosis through the intrinsic apoptotic pathway, sepa-
rate from its role in telomere maintenance [32]. Recent 
research by Majumder et al. underscores the importance 
of TERC regulation in cancer progression. They identi-
fied the RNA-binding protein FXR1 as a critical factor 
stabilizing TERC in head and neck squamous cell carci-
noma [45]. FXR1 binds to G-quadruplex RNA structures 
within TERC, maintaining its stability and promoting 
telomerase activity to evade senescence. Silencing FXR1 
reduced TERC levels, impaired telomerase function, 
and induced cellular senescence, linking TERC regula-
tion to the evasion of growth arrest in cancer cells  [45]. 
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Collectively, these findings emphasize the central role of 
TERC in telomerase activity, genome stability, and gene 
regulation. Targeting TERC through direct inhibitors or 
modulation of its regulatory pathways represents a prom-
ising avenue for cancer treatment. However, this requires 
careful consideration of its multifaceted functions.

Telomeric repeat-containing RNA (TERRA)
TERRA is a class of long non-coding RNAs transcribed 
by RNA polymerase II from telomeric and subtelomeric 
regions of chromosomes. Canonically, TERRA plays a 
critical role in maintaining genome stability and regulat-
ing telomere length [49]. The expression of TERRA var-
ies across different cell types and telomere lengths, with 
its levels being regulated by chromatin state and cellular 
stress. In the nuclear foci at chromosome ends, TERRA 
interacts with telomeric chromatin and associated pro-
teins, such as the shelterin complex. TERRA molecules 
are G-rich RNA, composed of 5’-UUAGGG-3’ repeats, 
and exhibit considerable size heterogeneity, ranging from 
100 base pairs to over 9 kilobases in mammals [49]. At 
telomeres, TERRA performs several critical functions. 
It helps maintain the integrity of heterochromatin by 
interacting with histone-modifying enzymes, preserving 
the structure of telomeric chromatin. Beyond its canoni-
cal roles, TERRA influences the DNA damage response, 
gene expression, and certain immune regulatory pro-
cesses. Moreover, TERRA has been implicated in the 
development of cancer and inflammatory conditions, 
some of which occur independently of telomerase activ-
ity. These multifaceted roles make TERRA a promising 
therapeutic target for diseases involving telomere dys-
function and beyond [50, 51].

TERRA also mediates the formation of R-loops, unique 
three-stranded nucleic acid structures that consist of a 
displaced single-stranded DNA molecule and an RNA-
DNA hybrid. These structures naturally form during 
transcription and play an important role in telomere 
maintenance. TERRA-induced R-loops regulate telomere 
function by recruiting chromatin remodelers and DNA 
repair proteins [52]. However, when R-loops persist or 
form inappropriately, they can cause significant genomic 
instability and DNA damage. This is particularly evident 
in ALT (alternative lengthening of telomeres) positive 
cancers, where TERRA-driven R-loops accumulate at 
short telomeres to facilitate homologous recombina-
tion and maintain telomere length. The delicate balance 
between R-loop formation and resolution is vital for telo-
mere stability [53]. Dysregulation of these structures is 
increasingly associated with aging and cancer, making 
them a key focus for therapeutic interventions target-
ing telomere dysfunction. Understanding the molecular 
players involved in R-loop formation, resolution, and 
their interaction with TERRA provides deeper insights 

into their biological significance and pathological conse-
quences [54].

Non-canonical functions of TERC
Cell senescence
Cell aging is a process in which cells gradually lose nor-
mal physiological functions, including the ability to pro-
liferate and differentiate [55]. Cellular senescence, a state 
where cells permanently cease dividing but remain viable, 
is a key consequence of aging [56]. Normal human cells 
enter senescence after a limited number of divisions, a 
phenomenon known as replicative senescence or the 
Hayflick limit [57]. In addition, cellular senescence can be 
induced by external or internal stressors such as oxida-
tive stress, UV irradiation, hyperoxia, paracrine signaling 
from other senescent cells, and DNA damage [58–61]. 
This type of senescence, known as premature senescence, 
can occur independently of cell replication. Telomere-
related proteins play direct or indirect roles in regulating 
both replicative and premature senescence.

Telomere maintenance, TERRA and replicative senescence
Due to the ‘end-replication problem,’ cells lose a small 
fragment of telomere repeats with each DNA replica-
tion, causing progressive telomere shortening. When 
telomeres shorten to a critical length, shelterin pro-
teins—including TRF1, TRF2, POT1, RAP1, TIN2, and 
TPP1—can no longer form the intact shelterin complex, 
and the t-loop structure is disrupted. This exposes the 
loose chromosome ends with a single-strand G-rich 3’ 
overhang, triggering the DNA damage response (DDR) 
[62, 63]. Research suggests that two major DNA damage-
sensing molecules, ATM and ATR kinases, are inhibited 
by TRF2 and TPP1-POT1, respectively [64]. The telo-
mere DDR further recruits DDR factors, such as 53BP1 
and γ-H2AX, and activates downstream p53 signaling, 
promoting senescence [65, 66].

Telomere length is not shortened at a fixed rate dur-
ing DNA replication but is instead regulated by several 
telomere-related proteins. The shelterin complex and 
telomeric RNA (TERRA) contribute to the formation 
of secondary structures, including t-loops, R-loops, and 
G-quadruplexes (G4). These structures can impede telo-
mere replication, requiring specific proteins to resolve 
them, thus influencing the rate of telomere shortening 
during DNA replication [67, 68]. Shelterin proteins are 
crucial for telomere replication. For example, TRF1 is 
essential for preventing telomere replication fork stall-
ing at telomeres, while TRF2 aids by recruiting Apollo to 
resolve topological stress [69, 70]. Interestingly, overex-
pression of TRF1 and TRF2 can stall telomere replication 
[71]. Additionally, TRF1 and TRF2 help replication forks 
pass through hard-to-replicate sites in multiple ways. 
Down-regulation of Timeless significantly accelerates 
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telomere shortening [72, 73]. These results suggest a 
probably context-dependent manner in whichTRF1 and 
TRF2 influencing telomere replication. Another shelterin 
protein, POT1, can promote telomere replication by pre-
venting G4 structures formation [74]. The CST complex 
also plays important roles with shelterin in protecting 
telomere ends [75]. A CST complex member, Stn1, regu-
lates DNA polymerase α loading to telomeres [76]. Other 
non-canonical telomere-related proteins, including heli-
cases and single-strand DNA-binding proteins, contrib-
ute to telomere replication. For example, WRN, PIF1, 
and RTEL1 are involved in unwinding G4 structures at 
telomeres, while RTEL1 also resolves the t-loop, slow-
ing telomere shortening [77, 78]. RNase H and ATRX can 
dissolve R-loops by degrading or displacing TERRA [79, 
80].

In most normal human somatic cells, telomeres are 
not lengthened due to undetectable telomerase activity. 
However, the telomerase complex extends telomeres in 
stem cells and most cancer cells, preventing senescence. 
Telomere-related proteins regulate telomerase complex 
function [81, 82]. For instance, TIN2, a shelterin compo-
nent, recruits telomerase to the telomere and enhances 
telomere elongation [83]. Telomerase elongation is facili-
tated by the inhibition of G4 formation by POT1 [84]. 
TPP1, another shelterin protein, also recruits telomerase 
to chromosome ends independently of its protective role 
[85, 86]. The CST complex, in contrast, competes with 
POT1 and TPP1 and can act as a telomerase inhibitor 
[87].

Alternative Lengthening of Telomeres (ALT) is another 
mechanism to extend telomeres [88]. This pathway is 
dependent on homology-directed repair (HDR) medi-
ated by RAD51 or RAD52 and regulated by several 
telomere-related proteins in a context-dependent man-
ner [89, 90]. Shelterin proteins TRF2 and RAP1 inhibit 
ALT by preventing telomere “ultrabright” formations, 
which allows HDR factors to localize and form D-loops 
[91, 92]. Paradoxically, TRF2, RAP1, TIN2, and TRF1 
can also support ALT by facilitating the formation of 
ALT-associated promyelocytic leukemia bodies (APBs) 
[93, 94]. Furthermore, R-loops promote senescence in 
some cells by hindering telomere replication and trigger-
ing HDR in ALT-positive cells by inducing DSBs at telo-
meres [79, 80]. This recruits R-loop-regulating proteins 
such as RNase H, ATRX, RAD51AP1, and Npl3, facilitat-
ing ALT-dependent telomere lengthening [88, 95–97]. 
In ALT-negative cells, RAD51-mediated HDR results in 
uncapped telomere fusion, leading to stable senescence 
and genomic instability [98].

These mechanisms play crucial roles in telomere length 
maintenance during cell proliferation and the onset of 
replicative senescence.

Telomere and premature senescence
Premature senescence can arise from persistent DDR 
induced by stress [99]. Telomeres are particularly vul-
nerable to DNA damage and may form persistent DNA 
damage foci unrelated to replication-induced telomere 
shortening [100, 101]. Telomere-related proteins regulate 
stress-induced telomere DNA damage (tDD) and DDR.

Telomeric 8-oxo-guanine (8oxoG), a common damage 
caused by oxidative stress, activates ATM and ATR sig-
naling to trigger senescence. Acute 8oxoG can even cause 
telomere loss and crisis [102, 103]. This process detaches 
approximately 50% of TRF1 and TRF2 from telomeres, 
leaving telomeric DNA unprotected [104]. MTH1 
removes telomeric 8oxoG, thereby protecting telomeres 
and enhancing telomerase activity [105, 106].

Telomere-related proteins and mitochondrial Func-
tions also play a role in regulating cell aging. In skel-
etal muscle fibers, TRF2 loss leads to postmitotic cell 
senescence by downregulating mitochondrial SIRT3 
expression, causing mitochondrial dysfunction [107]. 
Interestingly, FOXO3a can replace TRF2 at telomeres, 
preventing telomere deprotection [108]. In cancer cells, 
TIN2 localizes in mitochondria and regulates various 
metabolic pathways [109]. Additionally, under chronic 
oxidative stress (such as H2O2 exposure, X-ray irradia-
tion, or excitotoxic glutamate exposure), TERT relocates 
to the cytosol and mitochondria, protecting mitochon-
drial DNA while downregulating telomerase activity for 
telomere elongation [110, 111].

Studies show that telomere damage accumulates per-
sistently during cell aging, suggesting that such damage is 
difficult to repair [101, 112]. This phenomenon is largely 
regulated by shelterin proteins. For example, TRF2 inhib-
its the repair of telomeric single-strand breaks (SSBs). In 
human fibroblasts, accumulation of stress-induced SSBs 
drives cellular senescence [113, 114]. DNA double-strand 
breaks (DSBs) are repaired through classical non-homol-
ogous end-joining (c-NHEJ), backup non-homologous 
end-joining (b-NHEJ), or HDR [115]. However, NHEJ of 
telomeres increases the risk of chromosomal fusion and 
requires strict regulation. TRF2 binds to a c-NHEJ factor, 
Ku, to inhibit telomere NHEJ [116]. TRF2 and RAP1 also 
inhibit another c-NHEJ factor, DNA-dependent protein 
kinase, while allowing counteraction with b-NHEJ [117]. 
Activation of protein phosphatase magnesium-depen-
dent 1 delta (PPM1D) phosphorylates TRF2, enhancing 
its interaction with TIN2, and promotes the binding of 
NHEJ factor 53BP1 to telomeres [118]. TRF2-depen-
dent R-loop formation with TERRA recruits RAD52 
[119], while telomerase complex protein TCAB1 recruits 
RNF168, BRCA1, and RAD51, promoting HDR [120].
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Telomere-related proteins and senescence-related pathways
Telomere is linked to cell senescence not only through 
the DDR but also via interactions with several key senes-
cence- related pathways. Telomere position effects (TPE) 
link telomere length to gene expression regulation [121]. 
It has been shown that telomeres can reach chromo-
some sites 10 Mb away, enriching TRF2 at the promoter 
regions of genes and regulating gene expression [122]. In 
CD4+ T cells and promyelocytic cancer cells, TPE was 
found to affect the expression of TERT [123].

Telomerase complex proteins regulate senescence-
related pathways. TERT reduces the ROS level by 
upregulating GSH: GSSG ratio [124], enhance PINK1 
mitochondrial localization, and promote mitophagy 
[125]. Telomerase complex, including hTERT and TERC, 
can bind to NF-κB and enhance NF-κB-dependent gene 
expression [126, 127]. Dyskerin 1 participates in telom-
erase complex by combining to TERC and interacting 
with Reptin [128]. Dyskerin 1 loss inhibit ribosome pro-
duction and lead to p53-mediated cell-cycle arrest [129], 
while reptin bind to p53 and inhibit its expression [130].

Immune cell regulation
Mutations in TERC and elevated TERC copy numbers 
are associated with congenital dyskeratosis, aplastic ane-
mia [131, 132], and other genetic diseases [133–135]. 
Notably, patients with these conditions often exhibit 
immunological dysfunction [136, 137]. TERC has been 

shown to function in immune regulation independent of 
its telomerase activity (Table 1) [32, 138–140].

Gazzaniga and Blackburn [32] investigated TERC’s 
non-canonical role in immune cell survival, revealing 
mechanisms that do not depend on its enzymatic activity 
or telomere elongation. They demonstrated that TERC 
protects CD4 + T cells from apoptosis induced by dexa-
methasone, implicating TERC in the intrinsic apoptotic 
pathway. Knockdown of TERC resulted in activation of 
pro-apoptotic markers such as Bim and increased cas-
pase-9 and caspase-3/7 activity, confirming TERC’s 
anti-apoptotic role. Importantly, this function was inde-
pendent of telomere length or DNA damage, suggesting 
TERC’s involvement in immune cell homeostasis under 
stress [32].

Liu et al. [141] further explored TERC’s non-canoni-
cal immune-regulatory functions, focusing on its abil-
ity to modulate inflammatory responses independently 
of telomerase activity. They found that TERC upregu-
lates inflammatory cytokines such as IL-6, IL-8, and 
TNF-α by activating the NF-κB signaling pathway. TERC 
binds to specific gene promoters (e.g., TYROBP, USP16, 
TPRG1L, and LIN37) through RNA-DNA triplex for-
mation, enhancing the transcription of these inflamma-
tion-related genes. Elevated TERC expression was also 
correlated with chronic inflammatory diseases such 
as type II diabetes and multiple sclerosis, where both 
TERC and its target genes are overexpressed. These find-
ings position TERC as a potential regulator of immune 
responses and a therapeutic target in inflammation-
driven conditions [141].

Germline mutations in TERC: canonical and non-canonical 
implications
Germline mutations in TERC gene have been implicated 
in a spectrum of disorders collectively known as telomere 
biology disorders (TBDs). These mutations primarily 
affect telomere maintenance, leading to canonical disease 
manifestations. However, emerging evidence suggests 
non-canonical roles for TERC, expanding our under-
standing of its function in human biology and disease.

Canonical implications of TERC mutations
The canonical effects of TERC mutations are primarily 
related to impaired telomere maintenance. One of the 
most well-characterized TBDs is dyskeratosis congenita 
(DC), an inherited bone marrow failure syndrome. Vul-
liamy et al. first identified heterozygous TERC muta-
tions in autosomal dominant DC, demonstrating that 
TERC haploinsufficiency leads to telomere shortening 
and disease [142]. More recently, it has been shown that 
zebrafish TERC and human TERC (hTERC) can serve 
as transcription factors that recruit RNA polymerase II, 
thereby regulating the expression of myeloid genes. This 

Table 1 Canonical and non-canonical functions of TERC in 
Immune Cell Regulation
Disease Mechanism Function Type Refer-

ence
Rheumatoid 
Arthritis

Cytokine regulation via 
NF-κB pathway.

Non-Canonical  [141]

Multiple 
Sclerosis

Cytokine regulation via 
NF-κB pathway.

Non-Canonical  [141]

Type II 
Diabetes

Cytokine regulation via 
NF-κB pathway.

Non-Canonical  [141]

Dyskeratosis 
Congenita

Telomere shortening due 
to TERC mutations.

Canonical  [142]

Aplastic 
Anemia

Impaired telomere main-
tenance in hematopoietic 
stem cells.

Canonical  [143]

Idiopathic 
Pulmonary 
Fibrosis

Telomerase dysfunction in 
alveolar cells.

Canonical  [144]

Cardiovascu-
lar Diseases

Telomere shortening in 
vascular cells (canonical); 
oxidative stress regulation 
(non-canonical).

Canonical & 
Non-Canonical

 [145]

Neurode-
generative 
Diseases

Telomere maintenance 
in neurons (canoni-
cal); mitochondrial and 
inflammatory regulation 
(non-canonical).

Canonical & 
Non-Canonical

 [146]
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suggests that TERC’s non-canonical functions are closely 
tied to DC [147]. TERC mutations have also been found 
in patients with isolated aplastic anemia, highlighting the 
variable expressivity of TBDs [148]. These findings have 
expanded the phenotypic spectrum of TERC mutations 
to include idiopathic pulmonary fibrosis (IPF) and liver 
disease [149, 150].

The canonical effects of TERC mutations occur 
through reduced telomerase activity and accelerated 
telomere shortening. This leads to premature senescence 
in highly proliferative tissues, which explains the classic 
triad of mucocutaneous features, bone marrow failure, 
and cancer predisposition seen in DC [151]. Interestingly, 
the same TERC mutation can lead to different pheno-
types within a family, suggesting that genetic and envi-
ronmental modifiers influence disease expression [152].

Non-canonical implications of TERC mutations
Recent studies have uncovered non-canonical implica-
tions of TERC mutations. Beyond its role in telomere 
elongation, TERC has been shown to influence gene 
expression through interactions with chromatin-modify-
ing complexes. For instance, Chu et al. demonstrated that 
TERC can bind to chromatin at non-telomeric sites and 
regulate the transcription of target genes [153]. This sug-
gests that TERC mutations may affect cellular functions 
independently of telomere length.

Additionally, TERC has been implicated in mito-
chondrial function. Sahin et al. showed that telomere 
dysfunction can impair mitochondrial biogenesis and 
function through p53-mediated repression of PGC-1α 
and PGC-1β [154]. Although this study focused on TERC 
knockout mice, it raises the possibility that TERC muta-
tions in humans might similarly affect mitochondrial 
homeostasis, contributing to the complex phenotypes 
observed in TBDs.

TERC’s role in cellular senescence extends beyond telo-
mere shortening. Recent work has demonstrated that 
TERC can regulate cellular senescence through both 
telomerase-dependent and -independent mechanisms. 
For example, manipulating TERC levels through overex-
pression or depletion affects cellular senescence and pro-
liferation even in telomerase-deficient cells (TERC-/-), 
suggesting non-canonical functions in senescence regu-
lation [35]. These findings suggest that TERC mutations 
could impact tissue homeostasis through mechanisms 
beyond simple telomere attrition, potentially contribut-
ing to the diverse phenotypes observed in TBDs.

Understanding both the canonical and non-canonical 
implications of TERC mutations is crucial for improv-
ing the diagnosis and treatment of TBDs. Genetic test-
ing for TERC mutations has become an important 
diagnostic tool for patients with suspected TBDs [155]. 
Furthermore, emerging therapies targeting telomerase 

or telomere biology, such as small molecule telomerase 
activators or gene therapy approaches, hold promise for 
treating these disorders [156].

TERT and TERC in cancer
TERC demonstrates non-canonical functions in can-
cer, promoting tumorigenesis and progression through 
mechanisms that are unrelated to telomere elongation. 
These roles are multifaceted and involve the regulation 
of gene expression, cellular signaling, and interactions 
within the tumor microenvironment [157–159]. The 
role of TERC in cancer development has been particu-
larly elucidated in HPV-related cancers. The E6 and E7 
oncogenes from high-risk human papillomavirus (HPV) 
DNA are present in nearly all cervical cancers, and HPV 
infection is essential for cancer initiation and develop-
ment [160]. While E6 and E7 proteins are required for 
host cell immortalization, they are not sufficient for full 
cell transformation and tumorigenesis. This suggests that 
other host factors contribute to malignant transforma-
tion and progression. In general, no commonly occurring 
mutations have been identified in cervical cancer initia-
tion or progression [161]. However, telomerase activity 
increases in cervical dysplasia due to E6-induced TERT 
transcription and direct interactions with TERT [162–
171]. We and others have shown increased telomerase 
activity in cells immortalized by the high-risk HPV E6 
and E7 oncogenes via three different mechanisms: activa-
tion of hTERT, stabilization of hTERT mRNA, and direct 
interaction with hTERT protein [162–171]. TERT is also 
increasingly expressed in the cascade of cervical dyspla-
sia [172]. Our previous studies revealed a non-canonical 
function of TERT in HPV-induced immortalization, 
where TERT regulates cellular gene expression and HPV 
promoter activity independent of its telomerase activity 
[22, 162, 173]. Interestingly, TERC, the RNA component 
of the telomerase complex, is amplified and overex-
pressed in nearly all human cervical cancers (> 90%) [174, 
175]. Studies have shown that TERC expression is ele-
vated in 20–21% of mild dysplasia (CIN I), 50–68% of 
moderate dysplasia (CIN II), 81–82% of severe dysplasia 
(CIN III), and 95–100% in invasive cancers [176, 177]. 
Recently, we demonstrated that high expression of both 
TERT and TERC led to increased cell growth, anchorage-
independent growth in soft agar, and tumor formation in 
immunodeficient mice [178]. This represents a key pro-
gressive step in the conversion of normal to malignant 
cells. In cells overexpressing both TERT and TERC, the 
molecular interplay between HPV oncogenes and telom-
erase is important for tumorigenesis [178]. These data 
suggest that TERT and TERC play critical roles in the 
multistep development of human cervical cancer through 
both telomerase-dependent and -independent pathways.
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Sun et al. [157] uncovered a non-canonical role for 
TERC in the progression of non-small cell lung can-
cer (NSCLC). Beyond its role in telomere maintenance, 
TERC facilitates the nuclear localization of TERT. TERC 
mediates this process by promoting TERT’s interac-
tion with other telomerase subunits, such as SMG6, in 
the cytoplasm. This process, supported by the nuclear 
RNA export factor NXF1, is vital for assembling a func-
tional telomerase complex that maintains telomeres and 
regulates transcription. Elevated TERC levels, driven by 
promoter hypomethylation, are associated with more 
advanced cancer stages and poor patient outcomes [157]. 
Knockdown of TERC disrupts the assembly and nuclear 
transport of the telomerase complex, resulting in telo-
mere shortening, decreased NSCLC cell proliferation, 
and reduced expression of oncogenic factors such as 
c-Myc, Cyclin D1, and VEGF [157]. These findings high-
light TERC as a crucial contributor to NSCLC progres-
sion and a promising therapeutic target [157].   Wu and 
associates [158] reported a non-canonical role for TERC 
in regulating cell division. The study demonstrates that 
TERC and the PI3K-AKT signaling pathway are involved 
in a positive feedback loop. TERC enhances AKT phos-
phorylation and downstream signaling by transcription-
ally activating genes such as PDPK1, a crucial regulator 
of AKT activation. In turn, activated AKT suppresses the 
transcription factor FOXO1, which negatively regulates 
TERC expression, thereby maintaining the feedback loop. 
This mechanism is implicated in activated CD4 + T cells 
and normal somatic cells, where TERC-induced AKT 
activation is essential for cell proliferation. Their research 
also suggests that TERC overexpression may contribute 
to tumor progression by upregulating the expression of 
oncogenic targets such as IL4R and EGFR [158]. Cheng 
and colleagues [159] identified a novel non-canonical 
role for TERC in the mitochondria, where RNASET2 
converts it into TERC-53 and exports it to the cytosol. 
Cytosolic TERC-53 levels respond to mitochondrial dys-
function, serving as an indicator of mitochondrial states 
[159]. This highlights a new mitochondrial retrograde 
signaling mechanism that connects TERC to cellular 
regulation and potentially to cancer progression. Jin et 
al. [179] identified a non-canonical role of TERC in sup-
pressing PD-L1 expression independently of telomerase 
activity. TERC reduces the stability of PD-L1 mRNA by 
downregulating the RNA-binding protein HuR, which 
stabilizes PD-L1 transcripts. Elevated TERC levels accel-
erate PD-L1 mRNA degradation, inhibiting immune 
escape mechanisms in cancer cells. The study also dem-
onstrated that the FoxO1 inhibitor AS1842856 could 
upregulate TERC, counteracting chemotherapy-induced 
PD-L1 expression, offering potential for combination 
cancer therapy strategies [179]. Kheimar and colleagues 
[180] showed that TERC overexpression promotes tumor 

formation in a virus-induced cancer model. Using recom-
binant Marek’s disease virus, the researchers replaced 
the viral telomerase RNA (vTR) with cellular TERC and 
observed that TERC overexpression restored tumor for-
mation and metastasis in the absence of vTR. This effect 
was independent of viral replication efficiency, suggest-
ing a telomere-independent mechanism. These findings 
provide direct evidence that cellular TERC contributes to 
oncogenesis when overexpressed, highlighting its poten-
tial role in virus-induced cancer progression [180].

Viruses and host interactions
Early reports indicating a reduced papilloma frequency 
in TERC-deficient cells suggested a potential correlation 
between TERC and viruses [181]. Subsequent discoveries 
of virus-encoded telomerase RNA have revealed mecha-
nistic crosstalk between viruses and TERC. For instance, 
Marek’s disease herpesvirus can encode a TERC-like 
viral telomerase RNA, which has been shown to promote 
tumorigenesis [182]. Notably, this function persists even 
when the viral telomerase RNA is replaced by cellular 
TERC [180], and both human TERC and viral telomerase 
RNA exhibit anti-apoptotic effects [183], indicating func-
tional similarities between telomeric and viral RNA.

The correlation between TERC gene amplification 
and viral signals has been studied in HPV-infected cells. 
Simultaneous FISH detection of TERC gene copies and 
integrated HPV in uterine cervix lesions revealed that 
HPV integration is associated with an increase in TERC 
gene copy number [184, 185]. Later studies that co-
detected TERC lncRNA and HPV E6/E7 mRNA sup-
ported this correlation [186]. These studies primarily 
focused on the co-detection of HPV and TERC as bio-
markers for cervical cancer, rather than exploring the 
underlying mechanisms of this correlation. Furthermore, 
their findings were mostly limited to lesion samples. 
However, the development of HPV E6/E7 immortalized 
keratinocytes has enabled more in-depth in vivo studies 
on the HPV-TERC interaction. These studies indicated 
that the simultaneous overexpression of human TERT 
and TERC could induce tumorigenesis in E6/E7 immor-
talized cells [178].

Recent research on telomere-associated proteins has 
also indirectly connected TERC to viruses mechanisti-
cally. Dyskerin 1 (DKC1), a telomerase component that 
binds TERC to modulate telomere maintenance [187], 
has been shown to pseudouridylate EBER2, an Epstein-
Barr virus (EBV)-encoded noncoding RNA, which is 
crucial for efficient viral lytic replication [188]. Another 
telomerase component, NHP2, which stabilizes telo-
meres [189], was found to be upregulated in cells overex-
pressing the hepatitis B virus X protein (HBx). Knocking 
down NHP2 inhibited the proliferation of HBx over-
expressed cells [190]. TCAB1, a protein that binds and 
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recruits TERC to the Cajal body [191], was also upreg-
ulated by EBV to promote the DNA damage response 
[192]. TPP1, a shelterin component that indirectly binds 
TERC and recruits telomerase to telomeres [193], is 
degraded by herpes simplex virus 1 (HSV-1)-encoded E3 
ubiquitin ligase [194]. NOP2, a TERC-binding protein 
associated with catalytically active telomerase [195], has 
shown essential functions in association with two types 
of viruses. The HIV-1 Tat protein can be replaced by 
NOP2 at its binding site on HIV-1 TAR RNA, promoting 
viral latency [196]. Similarly, HBx has been reported to 
be post-transcriptionally regulated by NOP2, which adds 
five-methylcytosine to HBV mRNA, essential for HBV 
mRNA transportation and HBx translation [197].

Over the past few decades, TRF2, a shelterin com-
ponent that modulates telomeric maintenance along 
with TERC [198], has emerged as a key target for mul-
tiple types of viruses. The EBV life cycle has been shown 
to be regulated by TRF2 and other telomeric proteins 
through modulation of replication at EBV OriP [199]. 
Later studies revealed that TRF2 is displaced by EBV 
nuclear antigen (EBNA)-1 [200] and downregulated by 
EBV latent membrane protein 1 (LMP1) [201]. TRF2 is 
also post-transcriptionally inhibited during hepatitis C 
virus (HCV) infection through p53-dependent Siah-1a 
ubiquitination [202]. In cells infected with human her-
pesviruses 6 A and 6B, TRF2 is recruited to viral replica-
tion compartments (VRCs) to facilitate viral integration 
[203]. More recently, a study on SARS-CoV-2 infection 
reported its effect on downregulating TRF2 [204]. Collec-
tively, these findings suggest that TERC shares structural 
similarities with viral RNA, is correlated with viral latent 
integration, and overlaps in its reliance on telomere-asso-
ciated proteins that are crucial for viral life cycles.

TERC as a target for cancer therapy
In normal somatic cells, telomerase activity is minimal or 
undetectable, whereas telomerase is frequently upregu-
lated in cancer cells [9]. This makes telomerase a prom-
ising therapeutic target for selectively eliminating tumor 
cells while minimizing adverse effects on healthy tissues.

Small molecule inhibitors and vaccines targeting 
telomerase are the most common drug candidates in 
development. The connection between cancer progres-
sion and the noncanonical functions of telomerase fur-
ther strengthens the rationale for targeting telomerase 
as an anticancer strategy. This approach aims to disrupt 
the feed-forward regulatory mechanisms that sustain 
chronic inflammation and oncogenic processes, as well as 
to mitigate the oncogenic signaling pathways upregulated 
by telomerase.

Several key signaling pathways involved in tumorigen-
esis have been linked to telomerase activity, including 
Wnt/β-catenin [205, 206], NF-κB [205, 207], and DNA 

damage response (DDR) [208]. For example, the irre-
versible telomerase inhibitor NU-1 has been shown to 
impair DNA double-strand break repair by downregulat-
ing DDR-related gene expression in the colorectal cancer 
cell line CT26 [208]. Additionally, novel strategies are 
emerging to inhibit the interactions between TERT and 
β-catenin [209] or NF-κB [210], which could complement 
telomerase-targeting therapies. Further, the non-canoni-
cal functions of telomerase components like Reptin and 
Pontin, which interact with key oncogenic factors such as 
c-Myc and β-catenin [211–213], also present new targets 
for cancer therapy. Inhibiting these non-canonical func-
tions of TERC could provide an innovative therapeutic 
approach to suppress tumor growth. Targeting tumor 
cell survival and proliferation processes that operate 
independently of telomere elongation could make cancer 
therapies more effective. Inhibiting telomerase’s catalytic 
activity alongside its noncanonical functions may induce 
senescence in proliferating tumor cells by critically short-
ening telomeres while simultaneously curbing the activa-
tion of oncogenic signaling pathways.

These strategies hold promise for inhibiting telom-
erase-positive tumors with minimal cytotoxic effects 
on normal tissues, potentially offering an advantage 
over current anticancer treatment modalities. Further 
research into the noncanonical roles of telomerase com-
ponents, their mechanisms, interacting partners, and 
potential coactivators is essential for the development of 
effective therapies targeting telomerase-positive cancers.

One promising strategy involves the use of ligands that 
induce the formation of quadruplex structures in telo-
meric DNA, such as telomestatin, RHPS4, TMPyP4, and 
BRACO-19 [214]. In glioblastoma stem-like cells, RHPS4 
has been shown to suppress proliferation independently 
of telomeric dysfunction, suggesting a differential effect 
in cancer therapy [215]. However, given that G-rich DNA 
is abundant throughout the genome, particularly in the 
promoter regions of oncogenes, the use of G4 ligands 
may pose risks of off-target effects [216, 217]. TMPyP4, 
for example, inhibits TERT expression and telomerase 
activity in humans by downregulating TERT transcrip-
tion [218, 219].

THIO, 6-thio-dG, also named 6-thio-2’-deoxyguano-
sine is a nucleotide analog that has the potential to 
induce telomere dysfunction in telomerase-positive cells 
by being incorporated into telomeric DNA [220]. In non-
small cell lung cancer (NSCLC) xenografts, 6-thio-dG 
has been shown to inhibit tumor growth by promoting 
telomere damage [221]. This therapeutic effect has been 
validated in melanoma [221]. This therapeutic effect 
has been validated in melanoma [222, 223] and Gliomas 
[224], both in vitro and in vivo.

Additionally, 6-thio-dG has been found to reduce 
chemotherapy resistance in EGFR inhibitors. Research 
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demonstrated that NSCLC cells resistant to erlotinib, 
paclitaxel/carboplatin, and gemcitabine/cisplatin became 
sensitive to 6-thio-dG treatment [25]. More recent stud-
ies have shown that resistance to the EGFR mutant inhib-
itor Osimertinib in NSCLC involves TERT elevation, and 
combining Osimertinib with 6-thio-dG induces apopto-
sis in these resistant cells [225].

6-thio-dG has also shown potential in treating therapy-
resistant pediatric brain tumors. It effectively inhibits 
tumor growth in pediatric high-risk group-3 xenografts 
from neuroblastoma cell lines and orthotopic patient-
derived models of diffuse intrinsic pontine glioma [226, 
227]. Additionally, combining 6-thio-dG with anti-VEGF 
and anti-PD-L1 treatments has significantly improved 
efficacy in hepatocellular carcinoma [228, 229], particu-
larly through the action of CD8 + T cells.

Using compounds that inhibit TERT DNA-binding 
sounds less efficient than targeting active TERT sites 
directly [230, 231]. GRN163L (Imetelstat) binds directly 
to the TERC component in the catalytic site of the telom-
erase enzyme inhibiting telomerase [232]. It improves 
the efficacy of chemotherapy and induce cell death in 
patient-derived xenografts of Acute myeloid leuke-
mia (AML) [233, 234]. Imetelstat showed a reasonable 
effect in phase II study of lower-risk myelodysplastic 
patients [235]. In a phase III study, 40% of patients who 
are refractory to erythropoiesis-stimulating agents or 
have relapsed achieved transfusion independence at least 
8 weeks [43]. BIBR1532 compound binds to the active 
sites of TERT non-competitively, inhibiting its telomer-
ase activity [236, 237]. A potential anticancer therapeu-
tic strategy was suggested by Amin et al. who found that 
cellular proliferation in a zebrafish model was short-term 
inhibited by BIBR1532 [238]. Supporting this finding, a 
new BIBR1532-based analogue, demonstrated a stron-
ger anticancer activity in the Ehrlich carcinoma model 
[232]. The findings suggest that telomerase-targeting 
therapy exhibits significant potential; however, additional 
research is necessary to mitigate adverse drug reactions.

Lastly, TERT-derived vaccines have emerged as a 
promising approach to elicit an immune response against 
various cancers [239]. Several vaccine candidates are cur-
rently in clinical trials, either as single agents [240], or 
in combination with UV1 [241] or HR2822 [242], and in 
conjunction with checkpoint inhibitors [243–245]. TERT 
vaccines have demonstrated substantial therapeutic effi-
cacy in several cancer types through the recognition of 
CD4+/CD8 + T cells. However, further investigation is 
required to assess their safety profile and broader appli-
cability across different cancer types [246–248].

Future aspects
Investigating the non-canonical roles of TERC presents 
exciting opportunities for advancing our understand-
ing of its functions in cell biology, cancer progression, 
immune modulation, and therapeutic development. 
While TERC is widely recognized for its role in telomere 
maintenance, it is also implicated in various other cel-
lular processes. TERC interacts with numerous molecu-
lar pathways, contributing to transcription regulation 
and chromatin remodeling (Fig.  2) [249]. These interac-
tions are vital for maintaining chromatin stability and 
ensuring the integrity of the genome. Despite this, the 
non-telomeric functions of TERC remain relatively 
underexplored. This gap in knowledge highlights the 
need for further research to fully map how TERC inter-
acts with proteins and chromatin across different cell 
types. Recent advances in sequencing techniques are 
providing high-throughput tools that can significantly 
enhance our understanding of TERC’s non-canonical 
roles. For instance, Chromatin Isolation by RNA Purifi-
cation (ChIRP) has proven effective in enriching RNA-
binding proteins and DNA fragments associated with 
specific long noncoding RNAs, including TERC. Using 
ChIRP, it was discovered that hTERC binds to several 
Wnt pathway genes, suggesting a potential regulatory 
role in cellular signaling [33]. However, additional stud-
ies are needed to confirm these findings and elucidate 
the full scope of TERC’s involvement in these processes. 
Moreover, a recent study using hTERT ChIP-sequencing 
has shown that TERT can promote the expression of 
DNMT3b, a DNA methyltransferase, influencing overall 
DNA methylation patterns [250]. This finding suggests 
a possible link between telomerase and epigenetic regu-
lation, but whether these non-canonical functions are 
dependent on TERC remains an open question.

As research progresses, understanding these alterna-
tive functions of TERC could provide valuable insights 
into its broader role in cellular regulation, cancer pro-
gression, and immune response, potentially unveiling 
new therapeutic strategies.

In cancer, TERC’s role extends well beyond telo-
mere elongation. It may contribute to tumorigenesis 
through non-canonical pathways, including inflamma-
tion, immune system evasion, and genomic instabil-
ity [251, 252]. These mechanisms, often less explored, 
could significantly impact tumor progression, especially 
in cancers that are less reliant on traditional telomerase 
activity. Understanding these processes could offer a new 
perspective on TERC’s contribution to cancer biology, 
potentially reshaping our approach to tumor progression. 
Beyond its role in cancer development, TERC holds great 
promise as a diagnostic biomarker. This is particularly 
true in malignancies where TERC’s non-canonical func-
tions play a more prominent role [253]. Advancements 
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in detection technologies will be pivotal in unlocking 
TERC’s potential for early cancer diagnosis, providing 
more accurate and accessible tools for clinicians.

The therapeutic implications of TERC’s non-canonical 
functions are expansive. In addition to traditional telom-
erase inhibitors, therapies designed to modulate TERC’s 
regulatory roles could offer innovative strategies for 
cancer and other diseases [251]. Potential approaches 
include small molecules targeting RNA, antisense oligo-
nucleotides, or CRISPR-based tools aimed at modulating 
TERC expression—either by disrupting or enhancing its 
function. Furthermore, TERC’s unique role as a regula-
tory RNA opens the door for engineering TERC for ther-
apeutic purposes. Synthetic versions could be designed to 
counteract pathological processes or even promote tissue 
regeneration [254–256]. Integrating TERC-targeted ther-
apies with conventional cancer treatments may also yield 
synergistic effects, particularly for aggressive or treat-
ment-resistant cancers. This multi-pronged approach 
could improve treatment outcomes, providing new hope 
for patients facing challenging diagnoses.
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