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the primary focus on the transmission of DNA. How-
ever, emerging research over the past two decades has 
revealed that sperm cells carry a complex repertoire of 
RNA molecules, challenging the conventional view of 
sperm as mere carriers of genetic information [1–4].

Sperm-borne RNAs include a diverse array of small 
non-coding RNAs (sncRNAs), messenger RNAs 
(mRNAs), and long non-coding RNAs (lncRNAs). 
Amidst them, the sncRNAs such as microRNAs (miR-
NAs), piwi-interacting RNAs (piRNAs), and tRNA-
derived small RNAs (tsRNAs), have gained particular 
attention due to their potential roles in post-fertilization 
processes. These sncRNAs are now recognized as func-
tional molecules with the capacity to influence gene 
expression, embryonic development, and even transgen-
erational inheritance [2, 5, 6].

Introduction
The discovery of sperm-borne small non-coding RNAs 
(sncRNAs) has significantly expanded our understanding 
of the molecular mechanisms involved in reproductive 
biology and early embryonic development. Tradition-
ally, spermatozoa were primarily considered as vehicles 
for delivering the paternal genome to the oocyte, with 
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Abstract
Over the past two decades, the study of sperm-borne small non-coding RNAs (sncRNAs) has garnered substantial 
growth. Once considered mere byproducts during germ cell maturation, these sncRNAs have now been recognized 
as crucial carriers of epigenetic information, playing a significant role in transmitting acquired traits from paternal 
to offspring, particularly under environmental influences. A growing body of evidence highlights the pivotal role of 
these sncRNAs in facilitating epigenetic inheritance across generations. However, the exact mechanisms through 
which these paternally supplied epigenetic carriers operate remain unclear and are under hot debate. This concise 
review presents the most extensive evidence to date on environmentally-responsive sperm-borne sncRNAs, 
encompassing brief summary of their origin, dynamics, compartmentalization, characteristics, as well as in-depth 
elaboration of their functional roles in epigenetic and transgenerational inheritance. Additionally, the review delves 
into the potential mechanisms by which sperm-delivered sncRNAs may acquire and transmit paternally acquired 
traits to offspring, modulating zygotic gene expression and influencing early embryonic development.
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Spermatogenesis is a precise, well-orchestrated process 
of events, that includes stem cell proliferation and dif-
ferentiation, meiotic cell divisions and extreme chroma-
tin condensation to produce haploid sperm cells [7]. The 
presence of sncRNAs in sperm is not entirely surprising 
given that RNAs are integral to many cellular processes, 
including the regulation of gene expression, maintenance 
of genome stability, and modulation of cellular responses 
to environmental stimuli. One of the most intrigu-
ing aspects of sperm-borne sncRNAs is their potential 
involvement in epigenetic inheritance [8, 9]. Epigenetic 
inheritance is defined as the transmission of epigenetic 
information (information that is independent of changes 
in DNA sequence) from parent to F1 generation when 
the signal originated in males or to F2 generation when 
the signal originated in females [10]. Epigenetic modifi-
cations, such as DNA methylation and histone modifica-
tion, have long been known to influence gene expression 
without altering the underlying DNA sequence. Sperm-
borne sncRNAs are thought to contribute to this process 
by carrying DNA sequence-independent genomic regula-
tory information that can be transmitted to the next gen-
eration [4]. This mechanism allows for the inheritance of 
acquired traits, where environmental factors experienced 
by the father can lead to alterations in sperm RNA pro-
files, which, in turn, can affect the development and phe-
notype of the offspring.

Despite rapid advances, the mechanisms by which 
sncRNAs exert their effects remain poorly understood. 
It is hypothesized that upon fertilization, sperm-borne 
sncRNAs may influence early embryonic gene expression 
by interacting with the maternal RNA pool or modulat-
ing the zygotic genome. Furthermore, the specific path-
ways through which sncRNAs mediate transgenerational 
inheritance are still under investigation, with ongoing 
research aiming to elucidate how these sncRNAs are 
introduced, packaged, and functionally active in the 
context of reproduction and development. The study of 
sperm-borne RNAs represents a rapidly evolving field 
that bridges the gap between molecular biology, repro-
ductive science, and epigenetic inheritance. Understand-
ing the role of these RNAs in heredity and development 
not only provides insights into fundamental biological 
processes but also has potential implications for human 
health, fertility, and disease prevention.

Origin, dynamics and compartmentalization of 
sperm-borne sncRNAs
The presence of RNAs in sperm has long been a topic 
of intensive debate, largely due to the highly compact 
nature of DNA and the minimal amount of cytoplasmic 
remnant within the mature sperm. Testis-derived RNAs 
are continuously produced throughout the various stages 
of spermatogenesis. Compared to somatic cell types, 

meiotic spermatocytes and post-meiotic round sperma-
tids exhibit extraordinarily distinctive transcriptomes 
[11, 12]. As transcription ceases during the late sperma-
tid stage and most cytoplasmic contents are expelled, the 
RNAs detectable in sperm were initially presumed to be 
residual testicular RNAs or mere degradation byprod-
ucts. This debate has been significantly resolved with the 
identification of specific sperm transcripts across various 
species (Fig. 1). Advances in RNA sequencing (RNA-seq) 
methodologies have greatly enhanced the sensitivity, pre-
cision, and innovation in sperm RNA detection. These 
techniques have facilitated the identification, quantifi-
cation, and characterization of a complex population of 
both coding and non-coding transcripts within sperm, 
including mRNAs, miRNAs, piRNAs, tsRNAs, endog-
enous small interfering RNAs (endo-siRNAs), ribosomal 
RNAs (rRNAs), lncRNAs, and others [4, 13, 14]. How-
ever, it remains unclear whether these sperm RNAs are 
actively selected or introduced in response to environ-
mentally-induced signals.

When it comes to the dynamics of sperm-borne 
sncRNAs, extracellular vesicles (EVs) play a pivotal role. 
EVs are secreted cell-derived membrane structures that 
are highly heterogeneous in their origins, functions and 
properties [15]. Depending upon the size, three main 
classes of EVs can be defined. EVs, ranging from 100 nm 
to 1000 nm in diameter, are known as microvesicles [16] 
while EVs ranging in size between 1 ~ 5 μm in diameter 
are called apoptotic bodies [17]. The third class, best 
known as exosomes, is ranging from 30 ~ 150  nm [15] 
or even 200  nm [18] in diameter. These EVs can act as 
signaling vehicles and participate in cell-cell communi-
cation to maintain the body’s homeostasis through the 
transfer of nucleic acids, lipids, and proteins [19, 20]. 
EVs produced by the epithelial cells of the epididymis are 
known as epididymosomes, and these are the best char-
acterized and specialized types of membrane-bounded 
structures, typically with 50 ~ 250  nm in size [21]. Epi-
didymosomes perform their functions in the male repro-
ductive tract (i) by eliciting a form of paracrine regulation 
by interacting with neighboring epithelial cells [22] (ii) 
by interacting and transiting with spermatozoa to deliver 
complex payload of regulatory elements that influences 
sperm maturation and signaling [23–25], and (iii) by pro-
viding protection to sperm against reactive oxygen spe-
cies (ROS) [26]. Among these functions, the involvement 
of epididymosomes in sperm maturation by delivering 
regulatory elements has gained more attention and it is 
under intense investigation.

Mounting evidence suggest that epididymosomes are 
key mediators of soma-to-sperm shuttling of sncRNA 
repertoires [25, 27–30] (Fig.  2). These EVs have been 
directly implicated in the transfer of tRFs and miRNAs to 
the epididymal sperm. For example, Nixon has provided 
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the first evidence for the post-testicular modification of 
sperm miRNA profile when sperm transit from caput to 
cauda epididymis. RNA sequencing data reveal the loss 
of 113 miRNAs and acquisition of 115 miRNAs during 
the sperm transition from proximal to distal epididy-
mal segments [31]. Another study has reported the role 
of caput epididymosomes in delivering small RNAs to 
testicular spermatozoa. A dramatic switch in the RNA 
payload from piRNAs to tRFs has been identified when 
sperm transit from the testis to the epididymis [25]. In 
a similar vein, a 2024 study delineated the involvement 
of epididymosomes in the modulation of miRNA pro-
file in sperm. This work found that a subset of miRNAs 
lost during spermatogenesis are partially restored dur-
ing sperm epididymal transit [30]. Of note, epididymo-
somes not only impart new sncRNAs to sperm but also 
selectively increase or enrich the copy number of exist-
ing sncRNAs. For example, the copy numbers of specific 
miRNAs (miR-191, miR-375, miR-467a, miR-467d, and 
miR-467e) were expanded when sperm were incubated 
with epididymosomes [28]. Similarly, a markedly quan-
titative increase in several miRNAs, such as miR-21a, 
miR-29c, miR-199a, miR-200b/c, and miR-10a/b, was 
observed in sperm during their transit through the epi-
didymis. In agreement with this, significant increases in 

miRNAs and tRFs were recorded when testicular sperm 
were incubated with caput epididymosomes [25, 29].

Conversely, a study conducted by Wang and his collab-
orators challenged these findings by showing that cyto-
plasmic droplets (CDs), rather than epididymosomes, 
are responsible for dynamic changes in small RNAs, pre-
dominantly for the tsRNAs and rsRNAs, during sperm 
maturation inside the epididymis. They have identified 
the drastic changes in sRNA composition in the caput 
epididymal sperm, particularly the enrichment of tsRNAs 
compared with testicular and cauda epididymal sperm. 
By applying immunofluorescent staining of the epididy-
mal epithelial marker, sRNA-seq-based sRNA profiling, 
sRNA-ISH analyses and northern blot, they have con-
firmed that the changes resulted from sperm exchanging 
small RNAs with CDs rather than the epididymosomes 
[32]. Thus, we can conclude that epididymosomes are key 
players in transporting sncRNA cargos to mature sperm, 
however more research evidence is required to further 
clarify and strengthen the role of CDs in the dynamic 
changing of sperm sncRNA payload.

Beyond the contribution of epididymosomes and CDs 
for delivering sncRNAs to the sperm, the presence of EVs 
in the testis and their potential role in spermatogenesis 
has recently become a topic of interest. Recent studies 
have suggested that the testicular microenvironment may 

Fig. 1 Historical timeline and perspective of spermatozoal RNAs. Sperm cells are deprived of majority of RNA molecules due to the highly compact na-
ture of the nucleus and sparse cytoplasm. In 1973, RNAs were detected in mouse sperm for the first time [37]. Thereafter, sperm cells from multiple other 
species, such as bovine [38], fern Scolopendrion [39], rat [40], human [41–43] and stallion [44] have been reported with various RNA transcripts. Over the 
recent years, advancement in RNA-seq technologies have further characterized the complex pool of sperm transcripts in different mammalian species. 
For example, in 1999, Miller et al. employed cDNA cloning and sequencing techniques to characterize the intricate population of translationally quies-
cent human sperm RNAs for the first time [45]. According to the first global sperm transcriptome, human sperm contains roughly 3000–7000 distinct 
coding transcripts [46]. In 2000s, cDNA sequencing of maize sperm RNAs [47] and identification of sperm-delivered RNAs in zygotes [2] were performed. 
The presence and sequencing of human sperm sncRNAs were first described in 2005 and 2011, respectively [13, 48]. Sendler et al. (2013) identified over 
22,000 transcripts in human sperm [14]. A SpermBase database, a database compiling sperm-borne RNAs from multiple species was generated in 2016. 
According to this database, miRNAs and tsRNAs are conserved small RNAs among various species and can target a large number of genes known to be 
vital for early development [49]

 



Page 4 of 23Naveed et al. Cell & Bioscience            (2025) 15:5 

convey RNAs to spermatozoa through EVs [33]. A recent 
study reported that somatic EVs in the testis can also 
deliver sncRNA cargos to the elongated spermatids by 
crossing the blood-testis barrier (BTB) from interstitium 
to seminiferous tubules of testis [34] (further discussed 
below).

Additionally, emerging data from multiple groups have 
provided compelling evidences about the localization of 
diverse sets of sncRNAs within the different compart-
ments of mature mammalian sperm (Fig. 3). For instance, 
it has been reported that miRNAs and tsRNAs are deeply 
localized within the sperm nucleus [35, 36], while the 
sperm tail is highly enriched in piRNAs [25]. CDs, a sub-
cellular structure transiently present in testicular and 
epididymal sperm, have also been identified containing 
some sncRNAs, particularly tsRNAs and rsRNAs [32]. 
Together, these studies show that sperm-borne sncRNAs 
are subject to dynamically spatiotemporal regulation 
during sperm production within the seminiferous tubules 
and maturation through epididymal transit.

Types and characteristics of the most-described sperm-
borne sncRNAs
High-throughput RNA-seq technology has unveiled a 
diverse repertoire of spermatozoal RNAs in mammals, 
encompassing both small non-coding RNAs (sncRNAs, 
< 200 nt) and long non-coding RNAs (lncRNAs, > 200 nt) 
[52–54]. Strikingly, although various types of sncRNAs 
have also been identified in oocytes [55, 56], only endog-
enous small interfering RNAs (endo-siRNAs) seem func-
tional during oocyte development [57–59]. Among the 
most extensively studied sncRNAs in male germ cells 
are miRNAs, piRNAs, and tsRNAs, as briefly elucidated 
below (Table 1).

miRNAs
MicroRNAs (miRNAs) are one of the most well-charac-
terized classes of sncRNAs, constituting approximately 
7% of the total sncRNA pool in the sperm of fertile 
men [13, 48]. These small RNAs primarily regulate gene 
expression by targeting the 3′ untranslated region (3′ 
UTR) as well as 5′ UTR of mRNAs for degradation or by 

Fig. 2 Dynamic expression patterns of the widely-studied types of sncRNAs during mammalian spermatogenesis. (a) Testis-derived sncRNAs: testis-de-
rived small RNAs are continuously produced throughout the various stages of spermatogenesis. Meiotic spermatocytes and post-meiotic round sperma-
tids exhibit extraordinarily distinctive transcriptomes. Among testis-derived sncRNAs, piRNAs are the most abundant sncRNAs while tsRNAs and miRNAs 
show less expression levels [11, 12]. (b) Soma-germline interaction and sncRNA transportation via epididymosomes: Epididymosomes are generated by 
the exocytosis of epididymal epithelial cells, and function as exosome-like RNA carriers, transferring the RNA repertoire to sperm during their maturation 
in the epididymis. Epididymosomes not only impart new sncRNAs to sperm but also likely selectively increase or enrich the copy numbers of existing 
sncRNAs [28, 30]. The most abundant sncRNAs in mature sperm from the cauda epididymis are tsRNAs, along with varying levels of miRNAs and piRNAs 
[25, 28, 29, 35, 49, 50]. The width of the arrows represents the relative abundance of specific sncRNAs throughout spermatogenesis in the testis and sperm 
maturation in the epididymis. Thus, sperm-borne sncRNAs are subject to dynamically spatiotemporal regulation during sperm production within the 
seminiferous tubules and their maturation through the epididymal tract
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Table 1 Types, characteristics and roles of the widely-studied sperm-borne sncRNAs
Types Length 

(nt)
Strand Biogenesis Cell types Localiza-

tion in 
Sperm

Generic functions Functions in Sperm Ref-
er-
enc-
es

miRNA ~18–22 Single-
stranded

Nucleus and 
cytoplasm

Spermatogonia, 
spermatocyte, 
spermatids 
and mature 
spermatozoa

Nucleus: 
copious 
amount 
Tail: less 
amount

Transcriptional and trans-
lational regulation, cell 
proliferation, apoptosis, cell 
differentiation, metabolism, 
cell cycle

Sperm maturation, 
early embryonic 
development, epi-
genetic modifica-
tion, transcriptional 
regulation

[13, 
25, 
35, 
36, 
186]

piRNA ~24–33 Single-stranded Nucleus and 
cytoplasm

Spermatocytes, 
spermatids 
and mature 
spermatozoa

Tail Suppression of retrotrans-
posons within the nucleus, 
post-transcriptional silenc-
ing of transposon mRNAs 
within the cytoplasm

Pre-pachytene piR-
NAs: maintain germ-
line genome integrity 
Pachytene piRNAs: 
target spermatogene-
sis-related mRNAs

[13, 
88–
90]

tsRNA ~29–34 Truncated 
fragments

Cytoplasm Highly expressed 
in mature cauda 
epididymis sperm

Nucleus: 
copious 
amount 
Tail: less 
amount

Gene expression regula-
tion at transcriptional, 
post- transcriptional and 
translational levels, cell pro-
liferation, stress responses, 
RNA modification, protein 
binding, mRNA stability

Preimplantation 
embryonic develop-
ment and transgen-
erational epigenetic 
inheritance

[19, 
29, 
35]

Fig. 3 Compartmentalization of major types of sncRNAs in mature mammalian sperm. Localization of sncRNAs in mature mammalian sperm is closely 
associated with their developmental origins and biogenesis. Numerous studies have uncovered the presence of major types of sncRNAs in specific 
compartments of sperm cells, by employing techniques such as quantitative RT-PCR, in situ hybridization (ISH), microarrays, and high-throughput RNA-
seq methodologies [25, 32, 35, 36, 51]. The figure lists the distribution pattern of three major types of sncRNAs (miRNAs, piRNAs and tsRNAs) within the 
individual region of the mature sperm cell, as indicated, based on published data. These three sncRNAs have the most significant contribution in inter-
generational and transgenerational inheritance of epigenetic traits in mammals
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repressing translation [60–62]. It is estimated that around 
60% of protein-coding genes are regulated by miRNAs. 
High-throughput Argonaute 2 (Ago2) immunoprecipita-
tion RNA sequencing has revealed that a single miRNA 
can influence gene expression by targeting multiple 
mRNAs in a sequence-tolerant manner, while individual 
mRNAs can simultaneously be targeted by multiple miR-
NAs [63]. miRNAs are generally highly conserved across 
species, although some exhibit species-specific expres-
sion [13, 35, 44, 64, 65]. Not surprisingly, miRNAs abun-
dant in the testes are also present in mature spermatozoa 
[13, 66] They play key roles in numerous biological pro-
cesses, including cell proliferation, apoptosis and death 
[67], differentiation [68], metabolism [69, 70], cell-cycle 
regulation [71], gametogenesis [72–75] and embryonic 
development [76–78]. Certain miRNAs function as tran-
scriptional regulators by targeting other genomic regions, 
such as promoters and intergenic areas [79]. Notably, 
miRNAs are involved not only in regulating spermato-
genesis within the testes [72, 73, 80], but also participate 
in the maturation of sperm as they transit through the 
epididymis [81, 82].

piRNAs
piRNAs were identified in 2006 by four independent 
research teams, and represent a distinct class of sncRNAs 
that predominantly function in the germline. They inter-
act with the PIWI (P-element induced wimpy testis) clade 
of Argonaute proteins in fruit flies, mice and humans [12, 
83–86]. These small RNAs are animal species-specific 
and are highly expressed in the male germline, particu-
larly in spermatocytes and spermatids [12], as well as in 
mature spermatozoa across various species, and are also 
found in mature spermatozoa of several species [13, 35, 
87]. In humans, piRNAs comprise approximately 17% of 
the total sncRNA content [13]. Based on their precursor 
transcripts and timing of expression, piRNAs in mam-
mals are classified into two major types: pre-pachytene 
and pachytene piRNAs. Pre-pachytene piRNAs are 
homologous to retroelements and are predominantly 
expressed in fetal and perinatal mouse testes, where 
they repress transposon expression to maintain germline 
genome integrity [88]. Pachytene piRNAs, expressed in 
postnatal mouse testes, primarily originate from individ-
ual piRNA clusters in intergenic regions [89]. Mechanis-
tically, piRNAs are predominantly assumed to complex 
with PIWI proteins to suppress retrotransposons within 
the nucleus by recruiting DNA methylation and histone 
modification machinery to the transposon loci [88]. In 
the cytoplasm, they likely function in a manner similar to 
RNA interference (RNAi), inducing post-transcriptional 
silencing of target transposon mRNAs [90].

tsRNAs
tsRNAs are the most prevalent class of regulatory 
sncRNAs in mammalian sperm. These RNAs arise 
from the cleavage of mature cytoplasmic transfer RNAs 
(tRNAs) or precursor tRNA molecules [35, 91]. Initially 
thought to be random degradation products of mature 
tRNAs, tsRNAs have now been recognized as products 
of a highly regulated process involving site-specific cleav-
age by endonucleases or other uncharacterized enzymes 
[92, 93]. These enzymes generate two major types of tsR-
NAs: tRNA-derived fragments (tRFs), produced from 
mature tRNAs, or precursors by RNase Z or Dicer, and 
tRNA-derived stress-induced RNAs (tiRNAs), which are 
5′- or 3′-tRNA halves cleaved near the anticodon loop 
by angiogenin or ribonuclease Rny1 [91, 94]. Although 
tsRNAs have only recently been investigated, accumu-
lating evidence suggests they regulate gene expression 
at the transcriptional, post-transcriptional, and trans-
lational levels, and play roles in cell proliferation, stress 
responses, and mRNA stability [19, 95, 96].

Impact and role of sperm-borne sncRNAs in epigenetic 
inheritance
Although fully differentiated or the mature sperm in the 
cauda epididymis contains various types sncRNAs, their 
precise roles in fertilization, early embryogenesis, and 
offspring health remain inadequately understood. This 
ambiguity arises due to several factors: (1) the quantity 
of sperm-delivered sncRNAs at the time of fertilization 
is relatively low compared to the existing RNA cargos 
within the oocyte; (2) the oocyte itself contains simi-
lar types of abundant miRNAs that are also found in 
mature spermatozoa [97]; (3) the successful fertilization, 
pre-implantation embryo development, and production 
of healthy offspring in both mice and humans can be 
achieved by injecting round spermatids, testicular sper-
matozoa, or caput epididymal spermatozoa - each with 
distinct sncRNA payloads - into the oocytes [98–100]; 
and (4) the shuttling of sncRNAs between murine sperm 
and their CDs during sperm maturation inside the epi-
didymis also refutes the soma-to-sperm transmission of 
sncRNAs [32]. These observations raise critical questions 
regarding the specific roles of sperm-borne sncRNAs in 
mediating the transmission of acquired paternal traits.

Sperm-borne sncRNAs: environmentally-responsive 
epigenetic information carriers
The impact of mammalian sperm RNAs on offspring 
phenotypes has been highlighted by paramutation stud-
ies in mice, where purified total sperm RNAs from 
mutant mice were microinjected into fertilized wild-type 
oocytes, leading to the transmission of altered pheno-
types to the offspring [101–103]. Technical advances, 
along with controlled studies using various model 
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organisms, have provided exciting evidence that sperm-
borne sncRNAs are environmentally responsive carriers 
of epigenetic information. These sncRNAs play a pivotal 
role in the transmission of acquired phenotypes from 
father to offspring, independent of Mendelian inheri-
tance. Environmental factors such as psychological stress 
[104–109], dietary changes [9, 29, 110–114], toxicant 
exposure [115–117], pathogenic infection [118], inflam-
matory [119] and knockout (KO) [30] conditions can 
modulate the levels of sperm-borne sncRNAs. These 
regulated sncRNAs are significant, and in some cases, 
crucial contributors to fertilization, early embryonic gene 
expression, and the developmental programming of off-
spring (Table 2) (Fig. 4).

Environmental factors and stimuli are responsible for 
changes in various elements of nano-sized membrane-
bounded somatic EVs including sncRNAs. These envi-
ronmental insults compromise the integrity of the BTB 
or the blood-epididymis barrier, allowing the EVs to 
transfer sncRNA cargos (particularly miRNAs, piRNAs 
and tsRNAs) to immature testicular-germ cells, caput 
and cauda sperm cells [25, 120–122]. Sperm cells with 
deficient or differentially expressed sncRNA cargos can 
subsequently induce alterations in zygotic gene expres-
sion, leading to the atypical embryonic development and 
modified offspring phenotypes, mediating the intergen-
erational and transgenerational inheritance of epigenetic 
traits [107–109]. The inset illustrates that microinjec-
tion of a pool of RNAs predominantly sncRNAs, which 
were extracted from the sperm of males exposed to vari-
ous environmental stimuli, into a naïve zygote, followed 
by the implantation of naïve zygote into a foster mother, 
results in the offspring displaying phenotypes that closely 
resemble to the paternally acquired traits [9, 29, 30, 105, 
107, 109, 119].

Paternal transmission of psychological and stress 
conditions to the offspring via sperm-borne miRNAs
Recent studies have demonstrated the pivotal role of 
diverse spermatozoal miRNAs in the epigenetic inheri-
tance of psychological and stress-associated behaviors 
[104–109]. One of the pioneering studies by Mansuy and 
colleagues revealed significant alterations in the expres-
sion of several miRNAs (including up-regulation of miR-
375-3p, miR-375-5p, miR-200b-3p, miR-466-5p, and 
miR-672-5p), along with piRNAs (notably, the down-reg-
ulation of piRNA cluster 110) in sperm from traumatized 
mice. These epigenetic modifications were transmitted 
to subsequent generations, leading to altered behaviors, 
hypermetabolism, and insulin hypersensitivity in the 
progeny [104]. In line with this finding, recent research 
has provided deeper insights into the mechanisms by 
which paternal experiences, such as early life trauma or 
stress, impact the sperm transcriptome and subsequently 

convey epigenetic information to offspring. Van Steen-
wyk et al. identified elevated levels of circulating factors, 
such as serum lipid metabolites, in exposed male mice 
and their offspring, which affect the sperm transcrip-
tome and play a role in transmitting paternal allostatic 
load from periphery to germline to progeny. Further, in 
a human cohort study, a similar kind of metabolic altera-
tions was also observed in circulation of the children that 
had gone through early life trauma, suggesting the con-
served effects [121].

Similarly, another study reported the up-regulation of 
nine specific miRNAs (miR-193-5p, miR-204, miR-29c, 
miR-30a, miR-30c, miR-32, miR-696, miR-532-3p, and 
miR-698) in the sperm of mice subjected to six weeks 
of psychological stress [106]. Remarkably, the pheno-
typic effects of paternal chronic stress were recapitu-
lated by injecting a cocktail of these nine miRNAs into 
embryos from non-stressed parents [105]. Benito et al. 
(2018) demonstrated that alterations in paternal mouse 
sperm RNA, particularly miRNA-212/132, in response 
to environmental stimuli (physical and mental exercise), 
contributed to the transference of enhanced cognitive 
abilities from parents to progeny, thereby improving 
cognition and synaptic plasticity in the offspring [107]. 
Additionally, Dickson and colleagues identified reduced 
levels of miR-34b, miR-34c, miR-449a, and miR-449b in 
the sperm of both humans and mice exposed to adverse 
childhood experiences and chronic social instability. 
They observed a reduction in several members of the 
miR-34/449 family in embryos at various developmental 
stages and in the sperm of adult offspring from stressed 
male mice [108], suggesting these miRNAs contribute to 
the transmission of non-Mendelian inheritance of behav-
ioral phenotypes across generations.

A more recent study highlighted the direct causal role 
of sperm-borne miRNAs in mediating paternal trans-
mission of behavioral disorders, such as depression-like 
phenotypes, to offspring. This study demonstrated that 
microinjection of differentially expressed miRNAs, in 
response to stress conditions, into naïve zygotes affected 
neuronal gene regulatory networks during embryonic 
development and facilitated the paternal-to-offspring 
transmission of depression-like traits through epigenetic 
inheritance [109]. Collectively, these findings underscore 
the causal relationship between specific sperm miRNAs 
and stress-induced phenotypes, indicating sperm miR-
NAs as stable, heritable epigenetic markers.

Paternal transmission of diet-induced phenotypes to the 
offspring via sperm-borne sncRNAs
The studies by Fullston et al. underscore the critical role 
of sperm miRNAs in the transmission of diet-induced 
paternal phenotypes to offspring. Specifically, these stud-
ies demonstrated that a paternal high-fat diet (HFD) 
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(21% butterfat, 34% sucrose, 17% protein) induces altera-
tions in the miRNA profiles within both the testes and 
spermatozoa of F0 fathers, leading to epimutations and 
metabolic disturbances, such as glucose intolerance and 
impaired insulin sensitivity, in both male and female off-
spring across F1 and F2 generations. Intriguingly, obe-
sity was observed exclusively in the female offspring. 
The altered miRNA cargos in the sperm of HFD-exposed 
fathers, including up-regulation of miR-133b-3p, miR-
196a-5p, and miR-205-5p, and down-regulation of miR-
340-5p, were not detected in the sperm of the offspring, 
suggesting that other factors beyond miRNAs are critical 
for the transgenerational inheritance of these metabolic 
phenotypes [110, 111].

Another study revealed that progeny of male mice 
fed a Western-like diet (high-fat, high-sugar) exhibited 
impaired glucose tolerance, increased body weight, and 
insulin resistance. Intriguingly, microinjection of RNAs 
from sperm or testes of diet-exposed mice into normal 
zygotes recapitulated these metabolic phenotypes in the 
offspring, reinforcing the idea that testicular germ cells 
harbor epigenetic information reflecting paternal pre-
conceptual environmental exposures. Next-generation 
sequencing and qPCR analyses confirmed the deregula-
tion of various miRNAs and piRNAs in both the testes 
and spermatozoa of mice fed a Western-like diet. Nota-
bly, zygotic injection of miR-19b, a significantly up-
regulated miRNA in the sperm of these mice, produced 
offspring with increased body weight and glucose metab-
olism alterations, fully mirroring the paternal metabolic 
phenotypes [112]. These metabolic disorders persisted 
across subsequent generations, highlighting the active 
role of spermatozoal miR-19b in the transgenerational 
inheritance of epigenetic information (Table 2).

Chen and colleagues further elucidated the role of 
sperm tsRNAs in paternal RNA-mediated epigenetic 
inheritance of diet-induced metabolic disorders. Mice 
subjected to a HFD exhibited an overall increase (~ 11%) 
in sperm tsRNAs, and zygotic injection of these tRNA 
fragments led to altered expression of genes related to 
metabolic regulation in 8-cell embryos and blastocysts, 
ultimately reproducing the metabolic effects observed 
in naturally conceived offspring. The proposed mecha-
nism for this non-genetic inheritance involves RNA post-
transcriptional modifications, including 5-methylcytidine 
(m5C) and N2-methylguanosine (m2G) modifications in 
sperm tsRNAs.

These modifications likely confer greater stability to 
sperm tsRNAs as compared to their unmodified coun-
terparts (chemically synthesized tsRNAs without RNA 
modifications), which degrade more rapidly in serum 
[123] and zygote lysates [9]. In this way, these modi-
fied sperm tsRNAs with greater stability can influence 
metabolic phenotypes in offspring by modulating gene Sp
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expression in preimplantation embryos at both tran-
scriptional and post-transcriptional levels [9, 33]. Over-
all, these results indicate that modified sperm-delivered 
tsRNAs act as sensitive biomarkers of environmental 
exposure and serve as key intergenerational carriers of 
diet-induced epigenetic information (Table 2). This phe-
nomenon was partially recapitulated by another study 
reporting the intergenerational epigenetic inheritance 
of metabolic phenotypes due to altered spermatozoal 
sncRNA content in response to a HFD. Rats, another 
mammalian model, fed a HFD (21% milk fat and 34% 
sucrose), exhibited alterations in specific spermatozoal 
sncRNAs, including up-regulation of miR-let-7c-5p, 
tRF-Glu-CTC, tRF-Glu-TTC, piRNA-025883, and 
piRNA-015935, and down-regulation of miR-293-5p, 
miR-880-3p, and piRNA-036085. Offspring from these 
HFD-fed rats displayed decreased body weight, while 
adult female offspring had impaired glucose metabolism 
compared to controls. Further analysis of miR-let-7c sug-
gested its role as a potential transgenerational carrier of 
HFD-induced metabolic conditions, as its expression in 
metabolic tissues (liver, white adipose tissue, and muscle) 
was altered in adult offspring, leading to disturbances 
in glucose and lipid metabolism [114]. Notably, several 
members of the let-7 miRNA family, known to regulate 

target genes involved in lipid and glucose metabolism, 
were differentially expressed in the spermatozoa of LPD-
fed mice [29] and HFD-fed rats [114]. The same study 
found that miR-let-7c orchestrates overall metabolic 
phenotypes, and its deregulation in response to a HFD 
inhibited the translation of genes involved in glucose 
homeostasis and lipid metabolism, predisposing off-
spring to type 2 diabetes [114] (Table 2).

In another comparative study, mice fed a low-protein 
diet (LPD) exhibited down-regulation of several mem-
bers of the let-7 miRNA family, and up-regulation of 
tRF-Lys-CTT, tRF-His-GTG, and various tRNA-glycine 
fragments (tRF-Gly-GCC, -TCC, and -CCC). Blocking 
a specific sperm-borne tRF-Gly-GCC resulted in the 
up-regulation of genes associated with murine endog-
enous retrovirus (MERVL), typically highly expressed 
in preimplantation embryos, in embryonic stem cells 
(ESC) and zygotes. Injection of synthetic 5’ tRF-Gly-
GCC (LPD-regulated tRF) into naïve zygotes suppressed 
MERVL-related genes in two-cell embryos, supporting 
the hypothesis that specific sperm tRFs slow embryonic 
development after fertilization. Additionally, experiments 
revealed that specific genes activated during zygotic 
genome activation (ZGA) and associated with the toti-
potency program in early embryos were also regulated 

Fig. 4 Paternal transmission of environmental factor-induced conditions to offspring via sperm-borne sncRNAs
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by tRF-Gly-GCC [29, 124]. These findings suggest that 
paternal LPD-altered sperm tRFs can lead to abnormal 
preimplantation embryonic development and, conse-
quently, altered offspring phenotypes. Furthermore, 
another study identified the inhibitory role of 3’ tRFs 
on LTR-retrotransposons in preimplantation tropho-
blast stem cells [125]. Northern blot analysis confirmed 
the enrichment of 3’ tRFs in the epididymis and mature 
sperm, suggesting a potential role for sperm 3’ tRFs in 
regulating the endogenous retroelement MERVL in pre-
implantation embryos [25, 126].

A 2019 study of maternal HFD (MHFD) in mice elu-
cidated that zygotic injection of tsRNA-enriched sperm 
RNA fraction (30–34 nt) from F1 male (the immediate 
offspring of the MHFD mother) could induce hedonic 
behaviours (such as overconsumption of palatable food 
and alcohol preference) and metabolic phenotypes (obe-
sity and glucose metabolism) in the resulting F2 gen-
eration [113]. These findings suggest the functional 
specificity of the sperm tsRNAs, under the influence of 
MHFD, for epigenetic transgenerational inheritance. 
As obesity is associated with low-grade chronic inflam-
mation [127], a recent study used an anti-inflammatory 
agent 5-aminosalicylic acid (5-ASA) with HFD to access 
the effect of this chemical on sperm tsRNA levels in 
sires and in the transmission of epigenetic inheritance 
of paternal obesity to the offspring. Results indicate that 
intervention with 5-ASA in HFD could decrease the lev-
els of Glu-CTC tsRNAs in sperm cells and improve glu-
cose tolerance in female offspring fed a chow diet [128]. 
Collectively, these rodent studies proved that sperm-
borne sncRNAs, under the influence of different types 
of dietary elements, have a critical impact in the trans-
mission of paternal metabolic phenotypes across genera-
tions, ultimately influencing progeny health (Table 2).

In addition to numerous rodent studies identifying 
alterations in sperm sncRNAs due to dietary factors, 
the first controlled study in humans also reported rapid 
changes in sperm sncRNAs in response to dietary per-
turbations. Nätt et al. (2019) investigated the influence 
of a two-step diet intervention on human sperm quality 
and sncRNA repertoire by exposing healthy young men 
to a week of healthy diet followed by a week of high-
sugar diet. Sperm from these men exhibited increased 
motility after the first week, and following the second 
week, up-regulated levels of tsRNAs, particularly nuclear 
internal T-loop tsRNAs (nitRNAs). Conversely, the 
same nitRNAs and rRNA-derived small RNAs (rsRNAs) 
derived from mitochondrial DNA were down-regulated 
in sperm samples from obese men. Collectively, these 
findings demonstrate the impact of short dietary inter-
ventions on human sperm nitRNAs and rsRNAs, which 
are positively correlated with sperm progressive motility 
and negatively correlated with obesity [129], highlighting 

their potential as targets for studying the transmission of 
metabolic states from parents to offspring. Together, the 
emerging and extensive evidence highlights specific types 
of sperm-inherited miRNAs and tRFs as key players in 
the transmission of paternal diet-induced traits to prog-
eny in a DNA sequence-independent manner.

Paternal transmission of pathogenic, inflammatory and 
toxicant conditions to the offspring via sperm-borne 
sncRNAs
Tyebji et al. investigated the extensive roles of sperm 
small RNAs in male mice infected with the common 
human parasite, e.g., Toxoplasma gondii. Paternal infec-
tion with “T. gondii” induced alterations in the sperm 
epigenome, including significant deregulation of miRNA 
and piRNA levels, with 75 miRNAs up-regulated and 
35 piRNAs down-regulated. Microinjection of a pool 
of small RNAs extracted from the sperm of “T. gondii”-
infected males into control zygotes partially recapitu-
lated the behavioral changes observed in the offspring 
of infected males. These findings underscore the critical 
role of small RNAs in the intergenerational inheritance 
of behavioral impairments following paternal pathogenic 
infection [118] (Table  2). However, the precise mecha-
nisms through which these sperm small RNAs influ-
ence zygotic development and modulate offspring traits 
across multiple generations remain uncertain. Further-
more, previously it was also unclear that the pathogen 
itself or its associated inflammatory factors are respon-
sible for the alteration of sperm epigenome and trans-
mission of paternally acquired pathogenic conditions. A 
recent study reported the transmission of angiogenin-
mediated paternal inflammation-induced metabolic dis-
orders including glucose intolerance and obesity to the 
offspring via sperm tsRNAs [119]. Angiogenin is a stress-
responsive RNase that mediates the cleavage of mature 
tRNAs within the anticodon loops, producing 5′-tsR-
NAs (30–35 nt) (also known as tiRNAs) and 3′-tsRNAs 
(40–50 nt) [91, 130]. Deletion of angiogenin prevents the 
inflammation-induced alteration of 5’-tsRNAs expression 
profile in sperm and abolishes the transmission of pater-
nal inflammation-induced metabolic disorders to the off-
spring [119].

Paternal exposure to toxicant conditions such as 
methotrexate [116], phthalate [117] and antibiotics [131] 
has also been reported to cause phenotypic and meta-
bolic disorders in the offspring by affecting the paternal 
sperm sncRNA landscape. Paternal exposure of dicyclo-
hexyl phthalate (DCHP), a ubiquitous but understudied 
phthalate, has an adverse impact on the metabolic health 
of F1 and F2 offspring in mice. A novel PANDORA-
seq approach has revealed the up-regulation of sperm 
rsRNAs and tsRNAs (tRNA-Glu-CTC-5, tRNA-Arg-
CCT-2, tRNA-Arg-CCT-2 etc.) in exposed paternal 
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mouse, supporting the notion that these altered tsRNA 
and rsRNA landscape carry memorized information 
of paternally induced phenotype and can contribute to 
this chemical-elicited intergenerational and transgen-
erational effects [117]. Similarly, paternal exposure to 
non-absorbable antibiotics targeting gut microbiota 
cause changes in offspring physiology and behaviour, by 
altering sperm sncRNA payload [131]. Gut microbiome 
have been reported as a key interface between paternal 
preconception environmental condition and intergener-
ational health in mice [132]. Masson et al. administered 
non-absorbable gut-microbiome depleted antibiotics to 
male C57BL/6J mice and identified only 8 piRNAs with 
differential expression (5 with up-regulation and 3 with 
down-regulation). And the resultant offspring (F1) of 
these microbiome-depleted males showed reduced body 
weight, shortened colon length, anxiety and depressive-
like behaviours. The mechanistic understanding expli-
cates that paternal aberrant sperm piRNAs target gene 
pathways entailed in nutritional deficiency and hypoxic 
stress that can impact the behavioural and metabolic fea-
tures of the offspring [131]. Taken together, these find-
ings demonstrate that, in addition to psychologic and 
diet-induced factors, pathogenic, inflammatory and toxi-
cant conditions also have a significant impact in shaping 
sperm sncRNAs coding signature that, in turn, act as cru-
cial epigenetic carriers for the transmission of traits from 
father to offspring (Table 2).

In summary, the studies discussed above suggest that 
various types of sperm-borne sncRNAs are directly mod-
ulated by specific environmental factors. For instance, 
psychological, trauma and stress conditions primar-
ily affect miRNA levels, unbalanced diets (high fat, high 
sugar, low protein) predominantly alter tsRNAs and miR-
NAs, inflammatory conditions reshape tsRNAs, patho-
genic conditions influence piRNAs and miRNAs and 
exposure to toxic compounds chiefly modify tsRNAs and 
rsRNAs. And these modulated sncRNAs impact critical 
stages of early embryonic development, potentially lead-
ing to alterations in metabolic pathways in the offspring 
and ultimately affecting the health of future generations.

Potential mechanisms of sperm sncRNA-mediated 
epigenetic inheritance
The mechanisms by which sperm-borne sncRNAs trans-
mit paternal preconception conditions to offspring 
remain a subject of intense investigation. However, recent 
studies have begun to illuminate how alterations in sperm 
sncRNA expression, initiated by external environmental 
insults, can be stably encoded and subsequently passed 
on to the next generation through non-Mendelian inheri-
tance. This emerging evidence highlights the potential 
for these initial epigenetic changes to be maintained and 
expressed as stable phenotypes in the progeny.

Involvement of RNA-containing EVs in epigenetic 
inheritance
Germline development within the seminiferous tubules 
of the testis is naturally insulated from interstitial cell-
derived signals, largely due to the protective role of BTB. 
This barrier, primarily composed of Sertoli cells (SCs) 
with gap junctions, tight junctions, ectoplasmic spe-
cializations and desmosomes, ensures that the germline 
remains immune-privileged from blood-borne factors 
[133, 134]. However, once chromatin-condensed sperm 
are released from the tubules and enter the caput epi-
didymis via the efferent ductules, they become exposed 
to the somatic environment and capable of responding 
to external signals because epididymal sperm are sensi-
tive to the environment as compared to the developing 
germ cells [135]. Furthermore, epididymosomes pre-
sumably act as communicators by transferring a variety 
of bioactive molecules, including regulatory RNAs, from 
somatic cells to germ cells [25]. Interestingly, evidence 
suggests that EVs can enhance the long-distance delivery 
of functional RNAs from blood cells to neurons, particu-
larly when the permeability of the blood-brain barrier is 
increased due to inflammatory responses [136]. In line 
with these findings, it is plausible that mental stress [137, 
138] and HFD-induced obesity [120, 139], both of which 
are known to attenuate the BTB, could facilitate the 
transport of environmentally induced somatic EV cargos 
to immature and maturing sperm cells (Fig. 4). Notably, 
both psychological stress [140] and obesity [139, 141] 
are inherently inflammatory conditions. Cossetti’s study 
reported the soma-to-germline transference of RNA in 
mice xenografted with human tumour cells. EVs contain-
ing EGFP (enhanced green fluorescent protein) RNA can 
be released from xenografted human cells into the cir-
culatory system and ultimately found in the epididymal 
spermatozoa [122].

Accordingly, Conine’s study further strengthens the 
concept of soma-to-germline shuttling of small RNAs 
by employing Cre/Lox genetics to generate Dgcr8 KO 
mice [30]. Dgcr8, a subunit of the microprocessor com-
plex, is involved in miRNA biogenesis and processing 
[142]. In this study, germline- and epididymal-specific 
Dgcr8 KO mice were used to investigate the dynamics of 
sperm miRNA payload and their impact on post-fertil-
ization. There was a loss of 27 miRNAs identified in the 
sperm from epididymal Dgcr8 KO mice, and this loss was 
responsible for altered gene expression in the embryos 
fertilized by this sperm. In line with this, micro-injection 
of these epididymal miRNAs restores the post-fertiliza-
tion embryonic gene expression [30]. Hence, owing to 
the established role of epididymosomes in the transfer 
of sncRNAs to sperm, this study further explicates that 
these vesicles are the leading candidates to influence 
non-genetic information present in sperm, in the form of 
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sncRNAs, which can subsequently regulate the develop-
ment of offspring. In addition, van Steenwyk’s findings 
of transmission of paternal stress-induced experiences 
through the germline due to the elevated levels of serum 
lipid metabolites and altered sperm transcriptome [121], 
also suggest the involvement of somatic EVs in epigenetic 
inheritance. EVs (containing regulatory RNAs) release 
from the somatic cells and get into the circulating system, 
then cross the BTB or the blood–epididymis barrier and 
transfer information by affecting sperm transcriptome. 
Another recent study identified the presence of labelled 
testicular EVs within the seminiferous tubules that had 
been injected into the interstitial space of mouse testis. 
According to this study, somatic EVs can pass through 
the BTB from interstitium to seminiferous tubules of 
testis and can also deliver sncRNAs to elongated sper-
matids [34]. Hence, these findings support the notion 
that testicular EVs are permeable to the BTB and have 
potential contributions to the inheritable sperm sncRNA 
transcriptome.

Collectively, this evidence supports the notion that 
soma-derived factors communicate with immature germ 
cells in the testis via EVs or with maturing sperm via epi-
didymosomes in the epididymal tract. This communica-
tion may enable the epigenetic transmission of acquired 
traits in response to environmental stimuli (Fig.  4). 
Although the existing evidence reveal that EVs can 
cross the BTB or the blood–epididymis barrier, better-
designed experiments are still required to investigate the 
detailed mechanism and verify the ability of EVs to cross 
the BTB in vivo. In the sections that follow, we elaborate 
the mechanistic evidence of epigenetic trait transmission, 
as likely mediated by sperm-borne sncRNAs.

Regulation of transcriptional cascade and reshaping of 
embryonic development
While the sncRNAs that respond to environmental 
stressors may not be abundant in sperm, and the amount 
of RNA injected in previous pioneering studies [9, 101, 
104, 105, 112] exceeds the estimated number of sncRNAs 
transferred to the oocyte by a single sperm cell, the data 
provide compelling proof-of-principle evidence that 
sncRNAs possess unique properties enabling them to 
efficiently regulate early genomic events in the embryo. 
Perturbations in sncRNA levels can profoundly impact 
preimplantation embryonic development and offspring 
traits.

Under physiological conditions, mouse sperm deliver 
cytoplasmic information into the oocyte to influence the 
order of cell division and spatial patterning in developing 
embryos [143]. RNA-seq analysis suggests that mamma-
lian embryos exhibit small variations in their transcrip-
tomes at the two-cell stage due to imperfect cleavage 
division. These initial transcriptomic perturbations can 

evolve into a more defined asymmetric transcriptional 
pattern as the dynamic symmetry-breaking process pro-
gresses, i.e., zygotic transcriptional activation [144]. From 
this perspective, even slight changes in sncRNA distribu-
tion during early embryogenesis can affect the develop-
mental process through a butterfly effect. Theoretically, 
environmentally-responsive sperm-borne sncRNA car-
gos may trigger an embryonic transcriptional cascade 
that influences the symmetry-breaking process, produc-
ing offspring with phenotypes that recapitulate the pater-
nally acquired epigenetic memory.

A concrete example supporting this hypothesis is the 
downregulation of various genes associated with meta-
bolic regulation observed in both early embryos and the 
pancreatic islets of offspring when naïve zygotic embryos 
were microinjected with aberrant sperm tsRNAs 
extracted from HFD-fed fathers [9]. This finding rein-
forces the notion that sperm sncRNA content influences 
metabolic-related genes from embryonic stages to adult-
hood through a transcriptional cascade. In other words, 
the paternally inherited sncRNA-encoded signal is main-
tained in early embryos and amplified into the traits 
observed in adults. Another example of how inherited 
sperm miRNAs regulate embryonic transcriptional pro-
files is provided by Wang and his colleagues, who found 
differential and aberrant expression of numerous neuro-
nal genes in embryos generated from the sperm of males 
with depression-like phenotypes [109]. These genes, 
already implicated in the modulation of neuronal func-
tion [145–148], may be inappropriately reprogrammed 
and disrupted by inherited sperm miRNAs, which are 
typically tightly controlled and fine-tuned during early 
embryonic development. Essentially, inherited sperm 
miRNAs may induce small initial changes in core neuro-
nal circuits during embryogenesis, leading to amplified 
neuronal dysfunction and the development of neuropsy-
chiatric diseases in offspring via a butterfly effect. In this 
manner, altered sperm miRNAs can translate paternal 
environmental information and confer depression-like 
symptoms to offspring through epigenetic inheritance 
[109]. Collectively, these mechanistic findings high-
light the pivotal role of sperm-borne sncRNAs in regu-
lating transcriptional cascades during early embryonic 
development, and further support the concept of sperm 
sncRNA-mediated epigenetic inheritance.

Various studies have reported the role of sperm-borne 
miRNAs in the modulation of pre-implantation embry-
onic development in cows [149, 150], mice [5], rabbits 
and humans [151–154]. Such as, miR-34c, a member of 
the miR-34 family, has a major contribution in the first 
cleavage division of murine embryos [5] and in the devel-
opmental competence of embryos generated by somatic 
cell nuclear transfer [150, 155] and ICSI [151]. How-
ever, the mechanistic understanding of this regulation 
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of embryonic development by miR-34c was previously 
missing. miR-34c is expressed in sperm and absent in 
oocyte [5]. A recent study clarifies that miR-34c regu-
lates maternal mRNA and early embryonic development. 
According to this study, microinjection of miR-34c inhib-
itor in pronucleated zygotes of mice causes the upregu-
lation expression of maternal miR-34c target mRNAs 
and classical maternal mRNAs. Notably, genes such as 
Alkbh4, Mapk14, Sp1, Sin3a, Laptm4b and Sdc1 essen-
tial for preimplantation development, also significantly 
downregulate after microinjection of miR-34c inhibitor 
[156]. In line with this finding, Liu et al. identified that 
more than 70% of zygotes failed to cleave after the micro-
injection of miR-34c inhibitor [5]. Rodger et al. reported 
the reduction of maternal store of mRNA transcripts 
such as Sirt1, Ube3a, Aars, IL6st, Srsf2, Agfg1, Ncl and 
Ralbp1 upto 50–75% in early zygotes due to the zygotic 
microinjection of specific set of sperm miRNAs. Among 
these transcripts, Sirt1 and Ube3a are known to play a 
key role in chromatin remodeling and neurodevelopmen-
tal disorders. In this way, degradation of these important 
maternal mRNA transcripts leads to the reprogram-
ming of gene expression in the offspring hypothalamus 
with reduced hypothalamic–pituitary–adrenal (HPA) 
stress axis and recapitulating the stress dysregulation 
phenotypes in the offspring [105], as impaired mater-
nal mRNAs prevent proper ZGA and arrest embryonic 
development [157]. Overall, these findings illustrate that 
sperm-borne miRNAs regulate the gene expression pro-
filing of early zygotes after fertilization by interacting 
with maternal RNAs and play a significant role in reshap-
ing of embryonic development and ultimately reiterate 
the paternal phenotypes in the offspring (Table 2).

Sperm sncRNA modifications and epigenetic inheritance
Recent advances in RNA epigenetics have highlighted 
RNA post-transcriptional modifications as a crucial 
mechanism for transmitting paternally acquired envi-
ronmental information to offspring. A notable study uti-
lized liquid chromatography–tandem mass spectrometry 
(LC–MS/MS) to identify various RNA modifications in 
the small RNAs of mouse sperm [158], revealing a hidden 
layer of epigenetic regulation that adds stability to these 
RNAs. Specifically, a study found the significant increase 
in m5C and m2G in sperm tsRNAs from mice on a HFD 
and these modified tsRNAs preserve their functions in 
the oocyte after fertilization and exert their intergener-
ational effects [9]. RNA modifications could change the 
secondary structure of sperm tsRNAs in vivo and alter 
their targeting specificity with other RNAs, DNA or pro-
teins, ultimately enhancing their durability and extending 
their half-life even after fertilization and maintain their 
ability to transfer epigenetic information from parents 
to offspring [9, 33, 159]. In line with this finding, another 

study reported the crucial rule of modified sperm tsRNAs 
by zygotic injection of 30–40 nt RNAs (predominantly 
5′-tsRNAs) from angiogenin-mediated inflammatory 
males and non-modified synthetic 5′-tsRNAs and found 
that non-modified synthetic 5′-tsRNAs only partially 
resembled the paternal inflammation-induced metabolic 
disorders in offspring. Non-modified synthetic 5′-tsR-
NAs induces markedly less glucose intolerant yet similar 
obesity compared to the modified sperm RNAs, delin-
eating that 5′- tsRNAs may exert their actions via RNA 
modifications dependent or independent manners [119]. 
These findings elucidate the complex underlying mecha-
nism of tsRNAs-mediated transmission of paternal traits 
to offspring as these modifications provide more stability 
to tsRNAs compared to the non-modified tsRNAs.

Moreover, the enzyme DNMT2, which catalyzes the 
addition of m5C to specific tRNAs, has been implicated 
in inducing sperm tRF modifications in HFD-fed mice. 
The deletion of DNMT2 alters the sperm sncRNA pro-
file, reducing the levels of modified sperm tRFs while 
increasing the levels of 5´-tRNA halves. This disruption 
ultimately prevents the transmission of HFD-induced 
metabolic conditions from parent to progeny [126]. In 
a similar context, exposure to ethanol led to the detec-
tion of modifications such as 5-methylaminomethyl-
2-thiouridine and formylcytidine, which enhance RNA 
stability and prolong the half-life of their actions [160]. 
Collectively, these findings strongly suggest that various 
modifications in sperm-borne sncRNAs could change 
the structure of RNAs and alter their stability and target 
specificity. This can lead to the persistence of modified 
sperm small RNAs within the oocyte after fertilization 
and prolong the half-life of sperm RNA actions and play a 
central role in transmitting ancestrally acquired informa-
tion to the offspring (Table 2).

Here, it is important to note that the aforementioned 
studies primarily focused on small RNA fractions with 
30–40 nt in length, particularly tRFs, to identify modified 
nt using LC-MS/MS. One of the significant challenges in 
this field is mapping the entire spectrum of RNA modi-
fications and pinpointing the specific substrates of these 
modifications, as LC-MS/MS alone cannot accurately 
determine the exact sites. To overcome this limitation, 
future research should employ a combination of LC-MS/
MS, affinity pulldown, chemical approaches, RNA 
sequencing [161–163], and existing RNA modification 
databases [164–166]. These approaches will be instru-
mental in fully mapping RNA modifications in sperm 
and elucidating the mechanistic roles of altered post-
transcriptional modifiers, particularly modified tRFs and 
miRNAs, in the intergenerational inheritance of acquired 
traits.
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Perspectives
Our comprehensive review of the sperm-borne sncRNAs 
highlights the current understanding of their origin, 
dynamics, localization, potential functions, and involve-
ment in epigenetic inheritance, as well as the areas that 
require further exploration. The data presented here indi-
cate a close association between the aberrant expression 
of spermatozoal sncRNAs – triggered by various envi-
ronmental factors – and the intergenerational or trans-
generational inheritance of epigenetic traits. The studies 
illustrate that the fertilizing spermatozoon is a dynamic 
single-cell system that delivers a complex population of 
sncRNAs to the egg cell upon fertilization. These sperm-
delivered RNAs contribute to the molecular landscape of 
the embryo and influence offspring phenotypes by mod-
ulating zygotic gene expression patterns.

The consistent changes in sperm sncRNA populations 
from the testes to the epididymis reveal that spermato-
zoa acquire certain sncRNAs during testicular game-
togenesis, while others are likely obtained from EVs 
during their transit through the epididymal tract. Fur-
thermore, EVs play a crucial role in transferring envi-
ronmentally induced epigenetic changes from somatic 
tissues to sperm cells via sncRNAs. However, it remains 
unclear whether it is possible to reverse these sperm 
sncRNA-mediated epigenetic modifications to prevent 
the transmission of unfavorable acquired traits to off-
spring. Additionally, it is yet to be determined whether 
sperm sncRNAs, as epigenetic markers, are more respon-
sive to certain environmental factors than other epigen-
etic marks. The influence of one epigenetic mark over 
another likely depends on the developmental timing and 
the type of environmental stimuli. For example, mice fed 
a low-protein diet from birth to weaning exhibit changes 
in DNA methylation at ribosomal DNA (rDNA) in sperm 
cells [167]. In contrast, mice fed a low-protein diet start-
ing at weaning show changes in specific small RNA lev-
els, while rDNA methylation remains unchanged [29, 
168]. This suggests that the germline epigenome is likely 
more vulnerable to environmental stressors during early 
embryonic development and primordial germ cell devel-
opment, and that different sperm epigenetic factors may 
interact to transmit various aspects of paternally acquired 
traits to offspring.

The phenomenon of sperm sncRNA-mediated epigen-
etic inheritance has been documented in various model 
organisms. Some organisms, such as worms and plants, 
possess RNA-dependent RNA polymerase for amplify-
ing short RNA signals [169–173], but mammals lack this 
enzyme. Thus, it remains unclear how sperm-delivered 
sncRNAs exert long-term effects on adult phenotypes. 
However, experimental evidence suggests that sperm-
delivered sncRNAs regulate key developmental processes 
during the initial cell divisions post-fertilization, affecting 

early embryonic chromatin and DNA methylation states, 
which in turn can lead to long-lasting effects on offspring 
phenotypes in mammals. Moreover, epidemiological 
studies in humans have provided proof-of-concept evi-
dence that parental exposure to trauma, stress, famine, 
or toxicants can influence the health of descendants 
[174–178]. Epigenetic inheritance of acquired traits likely 
plays a significant role in the etiology of complex human 
diseases. However, the mechanistic understanding of 
such transgenerational epigenetic inheritance in humans 
is limited due to the challenges of obtaining multigen-
erational cohorts, collecting cells from exposed parents, 
and ruling out cultural and psychological confounders. 
Additionally, human sperm (~ 0.3–50 fg) contains signifi-
cantly less amount of RNAs compared to somatic cells 
(~ 3–10 pg), with approximately 200 times less RNA con-
tent overall [51, 179, 180]. This highlights the need for 
extensive research to unravel the nature and mechanisms 
of epigenetic inheritance in humans to prevent the trans-
mission of unfavorable acquired conditions to future 
generations.

As described above, while a growing body of evidence 
supports sperm sncRNA-mediated epigenetic inheri-
tance, our mechanistic understanding of this process 
remains in its infancy. Fundamental questions remain 
unanswered regarding the roles of sperm sncRNAs as 
mediators of epigenetic information. For instance, given 
that sperm sncRNAs likely influence early genomic 
events in the embryo and play a pivotal role in the inter-
generational inheritance of acquired traits, how much 
epigenetic information is encoded within the sperm 
sncRNA repertoire? Do sperm-specific transcripts carry 
detailed epigenetic information in response to specific 
environmental factors, or do they convey more gener-
alized information about overall life quality? How do 
sperm-borne sncRNAs transmit paternally acquired 
traits to future generations in humans, and what are the 
most concrete examples of this phenomenon? Answer-
ing these questions will be critical for understanding the 
influence of parental life experiences [181], accurately 
assessing male fertility status for pre-conception advice 
[180, 182], and designing therapeutic interventions to 
select sperm with optimal competence to improve fertil-
ity rates and embryo quality.

In conclusion, sperm-borne sncRNAs are essen-
tial for maintaining transcriptomic homeostasis dur-
ing fertilization, early embryogenesis, and ZGA. Sperm 
with deficient or altered sncRNA cargo significantly 
impacts embryonic development, potentially leading 
to altered phenotypes in progeny. These findings sug-
gest a novel intervention approach to improving fertil-
ity quality during IVF or ICSI procedures by injecting 
sperm-derived transcripts, specifically sncRNAs, into 
embryos. Establishing the role of sperm-borne sncRNAs 
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in the inheritance of acquired traits is merely the first 
step. Sperm RNAs, either individually or in combination 
with other epigenetic elements, may encode information 
about specific acquired traits. Understanding the basic 
mechanisms by which this information is encoded in 
sperm RNAs and subsequently decoded in offspring will 
require advances in technologies for ‘single-cell omics’ 
(such as transcriptomics, ChIP-seq [183], DNA methylo-
mics [184], and Hi-C [185]) and the design of sophisti-
cated experiments targeting sperm and early embryonic 
stages. Therefore, future dedicated research using genetic 
and epigenetic tools will be essential to fully comprehend 
the hereditary flow of information as sncRNA-borne 
‘codes’. We envision this review serves as a valuable sum-
mary and outlook of the extensively studied sperm-borne 
sncRNAs, their potential functions, and underlying 
mechanisms.
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