
D’Ascenzo et al. Cell & Bioscience          (2022) 12:102  
https://doi.org/10.1186/s13578-022-00831-5

RESEARCH

Metabolomics of blood reveals 
age-dependent pathways in Parkinson’s Disease
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Abstract 

Background : Parkinson’s Disease (PD) is the second most frequent degenerative disorder, the risk of which increases 
with age. A preclinical PD diagnostic test does not exist. We identify PD blood metabolites and metabolic pathways 
significantly correlated with age to develop personalized age-dependent PD blood biomarkers.

Results: We found 33 metabolites producing a receiver operating characteristic (ROC) area under the curve (AUC) 
value of 97%. PCA revealed that they belong to three pathways with distinct age-dependent behavior: glycine, threo-
nine and serine metabolism correlates with age only in PD patients; unsaturated fatty acids biosynthesis correlates 
with age only in a healthy control group; and, finally, tryptophan metabolism characterizes PD but does not correlate 
with age.

Conclusions: The targeted analysis of the blood metabolome proposed in this paper allowed to find specific age-
related metabolites and metabolic pathways. The model offers a promising set of blood biomarkers for a personalized 
age-dependent approach to the early PD diagnosis.
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Background
Parkinson’s disease (PD) is the second most frequent neu-
rodegenerative disorder. The Global Burden of Disease 
Study estimates the prevalence of PD to be approximately 
6.2 million people worldwide, with a prediction of nearly 
13 million by 2040 [1]. Although the connection between 
the accumulation of α-synuclein and the PD pathology 
has been extensively studied [2], the multiple mecha-
nisms contributing to its pathogenesis, including protein 
misfolding and aggregation, mitochondrial injury, oxi-
dative stress and inflammation, are not fully understood 

yet. As a result, a PD diagnosis is only possible after the 
insurgence of mobility functions impairment, such as the 
well-known tremor, following a consistent loss of dopa-
minergic neurons in the substantia nigra and in the stria-
tum. However, at sub-clinical stage, PD is accompanied 
by a non-specific symptomatology including depression, 
sleep disturbance, or loss of olfactive sense, which most 
often remain unaddressed, due to the absence of a sub-
clinical diagnostic PD test [3, 4].

The understanding of the relationship between PD 
and age has the potential to play a significant role in 
the personalized early PD diagnosis [5]. Sub-clinical PD 
manifestation occurs early, up to 20 years before the first 
clinical symptoms, with a risk increasing with age. This 
suggests that a series of age-related disfunctions may 
contribute to the development of PD. Proteins accumu-
lation, genetic factors, autophagy, mitophagy, and lower 
protection against oxidative stress have been proposed as 
possible age-related PD factors [6–9].
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Against this background, the blood metabolome con-
tains a rich source of information. In fact, the metabolic 
pathways affected by PD originate metabolites, which 
are released in the blood stream. The concentration of 
a series of amino acids, fatty acids, acylcarnitine, lipids, 
purines, organic acids, and sugars revealed PD-related 
disfunctions of the metabolism of branched chain amino 
acids, tryptophan, lipid, energy, and purine, and of oxi-
dative stress/redox homeostasis metabolic pathway 
[10]. Blood metabolome reflects in-vivo physiological 
states influenced by genetics, epigenetics and lifestyle 
and is therefore intimately connected with the biologi-
cal age. It has been found that antioxidants, nitrogen 
and muscle- or kidney-related elements indicate char-
acteristic age-related accumulation and deficiencies of 
metabolites [11]. Although PD is an age-related neuro-
degenerative disorder [12], an evidence of age-related PD 
significant metabolite disorder has not been found until 
now. Besides blood, metabolites contained in saliva, cer-
ebrospinal fluid (CSF) and sebum have been investigated. 
Although a series of metabolic pathways such as carni-
tine shuttle, valine, leucine and isoleucine degradation, 
fatty acid biosynthesis, sphingolipid, arachidonic acid, 
primary bile acids, fatty acids, ether lipids and vitamin 
E metabolism have been identified as possible metabolic 
pathways deeply related with PD, no significant correla-
tion between the involved metabolites, PD diagnosis and 
age was observed [10, 13–16].

The main aim of this paper was to study a possible 
relationship between PD and age by identifying blood 
metabolites, which express a significant age-dependent 
pattern in PD. This would allow to develop personal-
ized age-dependent biomarkers. We used a supervised 
machine learning approach to find novel blood PD bio-
markers by comparing the blood metabolome of PD and 
healthy subjects. We further applied a statistical analysis 
based on unsupervised machine learning and Bonferroni 
correction to discover possible age correlations of the 
selected biomarkers. We finally applied an enrichment 
pathway analysis to the selected biomarkers to identify 
the metabolic pathways related to age, either in PD or in 
healthy patients.

Methods
Sample participants
The subjects included in this study were consecutively 
enrolled at the Centre for Research and Training in Medi-
cine of Aging of the University of Molise. We recruited 39 
patients affected by PD and 39 healthy controls (HC). The 
subjects followed the same Mediterranean alimentation, 
without any specific dietary requirement. The demo-
graphic and clinical characteristics of the two groups are 

described in Table  1. PD patients were included in the 
study if the following conditions were verified:

1. A “clinically established” diagnosis of PD according 
to the criteria published by the Movement Disorder 
Society (MDS) [17]

2. Mini Mental State Examination (MMSE) score 
higher than or equal to 24;

3. Clinical Dementia Rating (CDR) scale score lower 
than or equal to 6;

4. Treatment with L-DOPA for at least 3 months.

We assessed the degree of PD severity with the MDS-
revised Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) and the Hoehn and Yahr scale [18]. The study 
was conducted in accordance with the ethical principles 
stated in the Declaration of Helsinki, and with approved 
national and international guidelines for human research. 
The Institutional Review Board (IRB) of the University 
of Molise reviewed and approved the study (IRB Prot. n. 
17/2020). A written informed consent was obtained from 
each participant.

Sample collection
The blood sampling was performed between 8:00 and 8:30 
a.m. after an overnight fasting of at least 8–10 h. Antecu-
bital venous blood was collected in vacutainer tubes for 
plasma preparation (Becton & Dickinson, Milan, Italy) 

Table 1 Description of the participants included in the statistical 
analysis

Parameter HC PD

Age (years) 73 ± 7.1 71 ± 6.4

Gender (Male/Female) 27/12 27/12

Scholarity 12.1 ± 3.9 11.02 ± 4.1

MMSE 28.5 ± 2.4 25.4 ± 2.3

UPDRS 55.3 ± 24.4

Hoehn and Yahr score 2.4 ± 0.6

GDS 2.5 ± 2.4 4.7 ± 3.0

BMI (Kg/m2) 26.3 ± 2.0 26.5 ± 2.3

Smoke 62% 30%

Alcohol 50% 44%

Hypertension 41% 42%

Diabetes 13% 15%

Dysplidemia 45% 32%

TIA/stroke 3% 12%

Myocardial infarction 5% 9%

Antihypertensive drugs 42% 46%

Hypoglycemic drugs 13% 11%

Lipid-lowering drugs 44% 22%

Antiplatelet drugs 11% 22%
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and immediately centrifuged to obtain plasma samples, 
which were stored at -80  °C until shipment to the ana-
lytical laboratory of BIOCRATES Life Sciences AG. The 
metabolomic approach based on mass spectrometry 
was used to obtain a quantitative determination of 630 
endogenous metabolites, grouped in different biochemi-
cal classes for each plasma sample  (MxP® Quant 500 kit). 
All pre-analytical and analytical procedures related to 
this project were performed, documented, and reviewed 
according to BIOCRATES Life Sciences AG’s ISO 9001: 
2015 certified quality management guidelines and stand-
ards. We used the  MxP® Quant 500 kit (Biocrates) for 
the quantification of several endogenous metabolites 
of various biochemical classes. Lipids and hexoses were 
measured by flow injection tandem mass spectrometry 
(FIA-MS/MS) analysis using a  QTRAP® 5500 instrument 
(AB Sciex, Darmstadt, Germany) with an electrospray 
ionization (ESI) source. Other metabolites were meas-
ured by liquid chromatography coupled to tandem mass 
spectrometry (LC–MS/MS) also using the  QTRAP® 5500 
Instrument. A summary of the 630 metabolites measured 
for this study is reported in the Additional file 1: Table S1. 
We removed dyhydroxy-phenilalanine and tyrosine from 
the list of metabolites as they were clearly related to the 
specific therapy of PD patients.

Statistical analysis
We pre-processed the metabolomic dataset, by reduc-
ing each variable to zero average and unitary variance. 
We compared two approaches for the assessment of the 
variation of the metabolome between the two groups 
of subjects. Partial least squares-discriminant analy-
sis (PLS-DA) is a regression technique for modeling the 
relationship between the metabolomic data block and 
the respective labeled categories (PD = + 1; HC = −  1) 
by maximizing their covariance [19]. The PLS algorithm 
reduces the input metabolomic data to  npls independent 
components and a regression coefficient matrix is used 
to predict the labels [20]. We compared the PLS-DA 
model with the orthogonal projections to latent struc-
tures (OPLS) approach [21], which provides a higher 
level of sophistication. It separates in fact the metabo-
lomic dataset in two different parts. The first one consists 
of  nopls predictive components, which are correlated with 
the expected categories. The second one consists of a 
 nort-dimensional orthogonal non-predictive block, which 
is generated by the intrinsic variability of the samples and 
is not correlated with the expected categories. We esti-
mated the number of optimal components by performing 
permutation tests for regression metrics and two-tailed 
permutation tests for each metabolite relative to its 
loading. We calculated the P-value of the PLS-DA and 
OPLS models by using a resampling with replacement 

(bootstrapping) validation technique. It is known that 
the higher is the number of components used to model 
the metabolomic dataset, the higher will be the probabil-
ity of overfitting. We adopted a K-fold cross-validation 
method by comparing the goodness of fit  R2Y and the 
predictability  Q2 parameters after a random variation of 
the labels [22]. If the  R2Y parameter after permutations 
is systematically higher than in the case of the correct 
data, then the model exhibits an illogic overfitting ability 
to predict any random permutation of the labels. Finally, 
we selected the best predictive model and the number of 
components avoiding overfitting and we calculated for 
each metabolomic parameter the variable influence on 
projection (VIP). However, the use of VIP values in the 
context of the selection of significant parameters needs a 
dedicated validation. There are in fact two problems. The 
first one is related to the intrinsic statistical fluctuations 
of the VIP value itself. Although the  R2Y and  Q2 param-
eters are calculated above by random label permutation 
and bootstrapping, that is not enough to prevent random 
fluctuations of the VIPs due to the highly variable nature 
of the data. There is therefore a certain probability that 
repeating the same test with an independent dataset may 
provide significantly different VIP values. This is particu-
larly true in OPLS models, which, as mentioned above, 
aim at separating the systematic variation contained in 
the data into two parts—a predictive part that is corre-
lated to the labels and an orthogonal part that is uncorre-
lated to the labels. A second problem, related to the first 
one, is the number of subjects in the study, which reflects 
to the statistical significance of the findings. To address 
this issue, we followed a four-steps procedure:

(1) Model validation we randomly selected 80% of the 
entire dataset to compose a training sample. As 
mentioned above, we performed a permutation 
test for regression metrics, and a two-tailed permu-
tation test for each variable to its loading (L). VIP 
values are selected with P < 0.05 and |L|> 0.04. We 
performed the receiver operating characteristics 
(ROC) analysis based on the selected parameters 
and we estimated the 95% confidence interval of 
the area under the curve (AUC) by using a resample 
with replacing (bootstrapping) approach.

(2) VIP values validation we calculated the VIP val-
ues of the selected parameters repeating the model 
training 1000 times. We used a resample with 
replacing (bootstrapping) approach by randomly 
sampling 80% of the entire dataset at each evalu-
ation. We selected only these parameters which 
exhibit a VIP > 1.0 in more than 95% of the trials. 
This test allows to remove parameters which are 
mostly affected by statistical fluctuations.
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(3) VIP values reduction following [23], we further 
strengthened the selection of the significant param-
eters by applying a features reduction strategy 
based on the principal components analysis (PCA). 
We analyzed the group of parameters selected at 
step (2) and we identified the number  Npca of inde-
pendent principal components  fi accounting for 
80% of the total variance. We extracted the metab-
olites with the most important contribution to 
each  fi, identified as the ones with PCA coefficient 
∣

∣cj
∣

∣

> 0.9max|ci|.
(4) Metabolites selection We finally selected as signifi-

cant only the metabolites which have both a vali-
dated VIP in step (2) and a significant PCA coeffi-
cient in step (3).

Age dependence
We calculated the correlation between the principal com-
ponents  fi and the age of the patients by using a Spearman 
correlation statistical method. We selected only those sig-
nificant principal components exhibiting a correlation 
coefficient |r|> 0.5 (P < 0.05/Npca). We applied a Bonferroni 
correction taking into account the multiple comparisons 
between independent statistical tests [24–29]. We finally 
verified that the metabolites selected in (4) also exhibit an 
age correlation in correspondence to the principal com-
ponent in which they have a significant contribution. Data 
and software have been included in RADIOLYTX (www. 
radio lytx. com) and in the HPE Ezmeral platform (www. 
hpe. com/ us/ en/ softw are. html).

Pathway analysis
We performed an enrichment analysis with the soft-
ware MetaboAnalyst (Version 4.0). Significant features 
were mapped into the Kyoto Enciclopedia of Genes and 
Genomes (KEGG). Feature hits on known metabolite 
networks were tested against a null distribution pro-
duced from permutations to yield significance values of 
metabolites enriched within any given network [30]. We 
performed first the enrichment analysis on the entire set 
of selected and validated metabolites with VIP > 1.0. At a 
second step, we restricted the analysis to these principal 
components  fi exhibiting a significant age dependence. We 
extracted the metabolites with the most important contri-
bution to each  fi, identified as the ones with PCA coeffi-
cient 

∣

∣cj
∣

∣

> 0.9max|ci| . We applied the enrichment analysis 

to each group of significant metabolites characterizing each 
component  fi and we identified possible age-dependent 
metabolic pathways for PD.

Results
Analysis of patient metadata
An overview of the clinical and demographic data of the 
patients is reported in Table  1. Two tailed t-test did not 
reveal any significant difference in age and BMI between 
PD patients and HC (P = 0.054 and P = 0.194, respectively). 
The Mini Mental State Examination (MMSE) score was 
found slightly significantly lower in PD group (P = 0.047). 
The ratio between men and women was 2:1 in the PD 
group, confirming the male prevalence of the disease 
reported in previous studies [31]. We selected a HC group 
with the same composition to avoid bias. Other indicators, 
such as smoke, scholarity, alcohol consumption, hyperten-
sion, diabetes, and dyslipidemia are not found significantly 
related to PD.

Data driven prediction of PD
We reported the scores plot of the first two components of 
a PLS-DA model with  npls = 3 in Fig. 1A. The PD patients 
and HC subjects appeared well separated. The model had 
an acceptable  R2Y = 0.76, but a very poor  Q2 = 0.06. A resa-
mpling with validation replacement technique (n = 500) 
confirmed that the model described the metabolomic data 
with a P-value of 0.02 (Fig. 1B). The reason of such a poor 
predictability was due to a sizable overfitting. As shown in 
Fig. 1C, a random permutation of the label vectors did not 
affect the goodness of the fit and the  R2Y value. We verified 
that lowering the number of components did not improve 
the performances of the PLS-DA technique.

The OPLS model with 3 orthogonal and 1 predictive 
component exhibited a better performance than PLS-DA, 
as qualitatively visible in the scores plot (Fig. 1D). Such an 
excellent disentanglement between PD and HC subjects 
was confirmed by an  R2Y = 0.83 and a  Q2 = 0.57. The model 
was validated with p-value of 9 ×  10–4 (Fig.  1E). Finally, 
the goodness of fit and the  R2Y values were significantly 
affected by random permutations of the labels, therefore 
confirming the absence of overfitting (Fig. 1F). In particu-
lar, the smaller was the similarity between the randomly 
permuted and the original labels, the smaller was the  R2Y. 
We verified that increasing the number of orthogonal or 
predictive components would increase the probability 
of overfitting. We therefore concluded that OPLS with 3 

Fig. 1 Data driven modeling for the discrimination between PD and HC subjects. The PLS model exhibits a good separation between the two 
categories of subjects (A) and its goodness is apparently confirmed by a resampling with replacement validation technique (B). However, we 
observe a non-negligible overfitting (C). With respect to PLS, the OPLS model exhibits a better separation between the two classes (D), confirmed 
with a P-value of 9 ×  10–4 (E) and absence of overfitting (F)

(See figure on next page.)

http://www.radiolytx.com
http://www.radiolytx.com
http://www.hpe.com/us/en/software.html
http://www.hpe.com/us/en/software.html
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Fig. 1 (See legend on previous page.)
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orthogonal and 1 predictive component was the best suited 
model for the metabolomic data considered in this study.

Selection of significant metabolites
The four steps of the parameter selection are shown in 
Table  2 and in the Additional file  1: Table  S2. At a first 
step, we used the variable importance in projection 
(VIP) parameter to select those metabolomic parameters 
playing a significant role in the discrimination between 
PD and HC group. A total of 320 metabolites exhibited 
VIP > 1. We performed a receiver operating character-
istics (ROC) analysis of this model restricted to these 
significant parameters (Fig.  2A). The 95% confidence 
interval of the area under the curve (AUC) was (0.972, 
1.0), confirming the excellent discrimination power of the 
OPLS predictive model.

However, we found that not all the 320 parameters have 
a significant contribution to the model. A large fraction 
of these parameters exhibits VIP > 1 only because of sta-
tistical fluctuations. As mentioned above, we validated 
the significance of the parameters using a resample with 
replacing (bootstrapping) approach by randomly sam-
pling 80% of the entire dataset at each evaluation and 
repeating the model training 1000 times. Only 76 meta-
bolic parameters, highlighted in Table  2 and Additional 
file 1: Table S2, exhibited a VIP > 1.0 in more than 95% of 
the cases.

We performed the final validation of the selected 
parameters based on an unsupervised Principal Com-
ponents Analysis (PCA) technique. We found that 80% 
of the total variance of the selected parameters could be 
described with five principal components. The significant 
parameters with PCA coefficient 

∣

∣cj
∣

∣

> 0.9max|ci| are 
reported in Table 2 and in the Additional file 1: Table S2. 
The cross-validated parameters, exhibiting a validated 
VIP > 1 and a significant contribution to a PCA compo-
nent, are 33 and are highlighted in Table  2 and in the 
Additional file 1: Table S2. They belong to the groups of 
acylcarnitines, amino acids, ceramides, cholesteryl esters, 
dihexosyl ceramides, fatty acids, hexosyl ceramides, 
lysophosphatidyl- and phosphatidylcholines, sphyn-
gomielins, triglycerides, and vitamins.

Age dependence of metabolites
The principal components identified in the study define 
three distinct groups in relation to age. The first group 
is represented by the principal components  f0,  f1, and  f4. 
Figure  2B shows the scatter plot of the value of  f1 ver-
sus the age for PD and HC: no significant correlation 
was observed (r = 0.08, P = 0.96; r = 0.02, P = 0.98) for 
 f1. A similar situation was encountered for  f0 and  f4. The 

second group, more interestingly, as shown in Fig.  2C, 
was represented by the component  f2 accounting for 
21% of the total variance. It exhibited a clear correlation 
with the age of PD patients (r = −  0.52; P = 0.007) but 
not of HC (r = 0.33; P = 0.09). The third group, finally, 
as shown in Fig. 2D, was represented by the component 
 f3 and accounted for the 11% of the total variance. It 
exhibited a clear correlation with the age of HC subjects 
(r = 0.64; P = 5.6 ×  10–4) but not of PD patients (r = 0.11; 
P = 0.56). The main parameters contributing to the linear 
expansion of the principal components are reported in 
Table 2. They were identified as the ones with coefficients 
∣

∣cj
∣

∣

> 0.9max|ci| . For instance, sphingomyelin C16:0 
(Fig.  2E), choline (Fig.  2F), and hexadecanoyl-carnitine 
(Fig.  2G) were significant examples of the three catego-
ries of metabolites.

Pathway analysis and age in PD
We performed pathway enrichment analysis to identify 
the effect of age in the metabolic pathways associated to 
PD. At a first step we performed the analysis to the entire 
set of identified significant metabolites, thus neglecting 
any age dependence. To provide an impression of the var-
iability of the validated parameters used at this first step 
of the enrichment analysis, we report the box plot of their 
concentration in Fig.  3A. We notice that, with respect 
to HC subjects, PD patients have an increased level of 
ceramides (d18:1/24:1) and (d18:1/26:1), triacylglycer-
ides (18:1/32:3) and (18:2/32:1), phosphatidyl-choline 
aa C34:2, and putrescine. sphingomyelin C22:3 followed 
an opposite trend, being reduced in PD patients. As 
reported in Fig. 3B, the enrichment analysis reveals that 
the biosynthesis of unsaturated fatty acids (P = 0.004), the 
tryptophan metabolism (P = 0.01) and the glycine, serine 
and threonine metabolism (P = 0.05) are the main meta-
bolic pathways, which express the significant selected 
metabolites. To verify the age dependence of these three 
metabolic pathways, we selected the metabolic param-
eters which have a significant impact into each principal 
component. As visible in Table 2, the parameters can be 
separated into three completely disjoint groups corre-
sponding to  f1,  f2 and  f3, which address age correlation 
in no subjects, only in PD and only in HC, respectively. 
We performed a pathway analysis to the three groups dis-
tinctly and we found that metabolites not exhibiting any 
age correlation are associated with tryptophan metabo-
lism. Similarly, metabolites exhibiting age correlation 
only in HC subjects are associated with the biosynthesis 
of unsaturated fatty acids. Finally, metabolites exhibiting 
age correlation only in PD subjects are associated with 
the glycine, serine and threonine metabolism.



Page 7 of 14D’Ascenzo et al. Cell & Bioscience          (2022) 12:102  

Table 2 Selection of the significant metabolites

Type Name fi C Name fi C Name fi C

Acylcarnitines Carnitine 0.9 Tiglyl- 0.0 Hexadecanoyl 3 0.9*
Acetyl- 3 0.9* Pimelyl- 1.1* Hexadecenoyl 3 0.8*
Butenyl- 1.2* Dodecenoyl- 0.5* Octadecenoyl 3 0.8*
Methylmalonyl 2.4 Tetradecenoyl 1 0.8*

Alkaloids Trigonellyne 1.1

Amine oxids Trimethylamine N-oxide 1.7*

Amino acid related Asymmetric Dimethylargin 0.9 Citrulline 1.1 Kynurenine 0.8

Methionine-sulfoxide 2 0.8* 1-Methylhistidine 0.8

Amino acids Cysteine 1.2 Glutamine 1.1 Glutamic Acid 2 0.8

Threonine 1.2*

Bile acids Cholic acid 2.0 Chenodeoxy acid 1.9* Deoxycholic acid 1.4

Glycolithochol acid* 1.4 Glycolithochol Acid sulfate 1.2*

Biogenic Amines Gamma-amino butyracid 0.8* Putrescine 1.6* Serotonin 0.2

Ceramides d16:1/24:0 1.3 d18:1/20:0 1 1.2 d18:1/26:1 1.3*

d18:1/16:0 1 1.1 d18:1/24:0 1.2 d18:2/18:0 1 1.1

d18:1/18:0 1 1.2 d18:1/24:1 1 1.3* d18:2/20:0 1.2*

d18:0/26:1OH 10.3 d18:1/24:4 1.2 d18:2/24:0 1 1.2

d18:1/20:0 (OH) 1.2 d18:1/22:0 1 1.2 d18:2/24:1 1 1.2

Cholesteryl esters 16:1 0.9 22:5 1.1* 20:4 1 0.9

17:1 1.1 20:0 2 0.7* 22:1 2 0.8*
18:1 1 0.9* 20:1 2 0.7* 22:2 2 0.7*

Cresols p-Cresol sulfate 1.2

Diglycerides 16:1_18:0 0.8 16:1_18:1 0.9 18:2_18:4 0.7

16:0_18:1 0.9 17:0_18:1 0.9 18:1_18:1 2 0.9

16:0_20:3 0.8* 16:1_20:0 4.6* 18:2_18:2 1.4*

Dihexosyl ceramides d18:1/14:0 1.1 d18:1/20:0 1 1.2 d18:0/26:1 1.2

d18:1/16:0 1 1.2* d18:1/24:0 1 1.1

d18:1/18:0 1 1.2 d18:1/24:1 1 1.1*
Fatty acids Arachnidonic 2 0.6* Docosahex 3 0.7* Eicosapent 0.7*

Eicosatrienoic 0.3* Myristic 3 0.2* Eicosenoic 0.6*

Octadecadienoate 3 0.8*
Hexosyl ceramides d18:1/24:1 1 1.2* d18:1/23:0 1 1.1 d18:2/18:0 1 1.2

d18:1/18:1 1 1.1 d18:1/26:0 1 1.1 d18:2/23:0 1 1.2

Hormones Cortisol 1.2* Cortisone 0.9

Indoles Indoleacetic acid 1.7* Indolepropionic acid 0.7 Indoxylsulfate 0.7*

Lyso-phosphatidyl LysoPC(17:0) 2 1.1* LysoPC(18:2) 1.2* LysoPC(28:1) 0.8*

Phosphatidyl-cholines aaC34:1 1 1.1 aaC36:3 1 aeC32:2 1 1.1

aaC32:0 1 1.1 aaC38:1 1 1.1 aeC34:3 1 1.2

aaC32:2 1 1.2 aaC42:0 1 1,2* aeC34:2 1 1.2

aaC34:2 2 1.2 aeC30:2 4 0.8* aeC44:6 2 1.2

aaC34:3 2 1.1 aaC42:1 1 1.2* aeC36:3 1 1.3

aaC36:2 1 1.1 aeC38:4 1 0.9 aeC38:0 4 1.1

aeC44:4 2 1.2 aeC40:5 2 1.1* aeC40:2 2 1.2*
aeC42:4 1 1.1*

Sphingomyelins Hydro-SM(14:1) 0.9 SM(16:0) 1 1.0* SM(22:3) 0.6

Hydro-SM(16:1) 1 0.9 SM(16:1) 1 0.9 SM(24:0) 0.9

Hydro-SM(22:1) 1 0.9 SM(18:0) 1 0.9 SM(24:1) 1 0.9*
Hydro-SM(22:2) 1 0.9 SM(18:1) 1 0.9 SM(26:0) 0.9

Hydro-SM(24:1) 1 0.9 SM(20:2) 1 0.9 SM(26:1) 1 0.9*
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Discussion
Significant metabolites as PD biomarkers
As summarized in Table 2, most of the significant metab-
olomic parameters presented different concentration lev-
els in PD and HC subjects, following the expectations of 
the current knowledge regarding the metabolic changes 
in PD. For instance, a decreased level of acyl-carnitines 
has been found in possible association to primary decre-
ment of mitochondrial β-oxidation and has been iden-
tified as a possible biomarker for PD [32]. Similarly, 
increased levels of trimethylamine N-oxide have been 
observed in PD patients. This amine oxide can cross 
the blood–brain barrier promoting cellular α-synuclein 
aggregations, neuroinflammation, mitochondrial dys-
function, and neuronal senescence [33]. As for amino 
acids, results are more controversial. For instance, our 
results confirm that no difference of glutamate concen-
tration has to be expected in PD compared to HC [34], 
although an higher glutamate concentration has been 
indeed reported in PD patients [35, 36]. More interest-
ingly, the importance of threonine as a possible PD bio-
marker is confirmed also in other studies [37]. Similarly, 
high levels of putrescine and ceramides in the blood of 
PD patients have also been observed [38, 39]. Polyamines, 
such as putrescine, cadaverine, spermidine and spermine, 
are involved in many vital processes, including cell prolif-
eration and differentiation, gene transcription and trans-
lation, modulation of ion channels and receptors, and can 
promote the aggregation and fibrillation of α-synuclein 
[38]. Ceramides play an essential role not only in shaping 
cell membranes, but also in regulating cellular processes 
of vital importance in PD. This leads to the observation, 
supported and confirmed also in other studies [39], of 
elevated Ceramide levels in PD patients.

In general, the finding that cholesteryl esters, sphingomie-
lins, fatty acids, dihexosylceramides, hexosylceramides, 
ceramides, phosphatidylcholines, lysophosphatidylcho-
lines, diglycerides and triglycerides have a high impact in 
the discrimination between PD and HC indicates a general 
alteration of lipid metabolism in PD [40, 41], supporting the 
hypothesis of PD as a lipidopathy [42].

Finally, the increase of the tryglicerides levels observed 
in this study disagrees with the literature, which shows a 
reduction or no differences in PD patients compared to 
HC [40]. However, our result is in line with a post-mor-
tem lipidomic study showing an increase of tryglicerides 
in the CSF of PD patients [43]. The ethnical and demo-
graphical characteristics of the subjects might be a pos-
sible explanation for the observed discrepancy [41].

Glycine, threonine, and serine metabolism correlates 
with age only in PD patients
A striking result of our study is that metabolites related 
to the glycine, threonine and serine metabolism exhibit 
a correlation with age in PD patients, but not in healthy 
subjects. It is well known that, in the production process 
of ATP from ADP, the creatine generated from threonine 
provides the necessary phosphate groups. As for PD, 
the relationship between glycine, serine and threonine 
metabolism has been intensively proved at the onset of 
α-synuclein aggregation, when glycine, serine and threo-
nine metabolism appear to be down-regulated [44]. How-
ever, a direct observation of the age dependency of this 
metabolic pathway in PD has never been reported. The 
fact that age-dependent mechanisms may occur in PD 
is corroborated by the recently observed age-dependent 
neuromelanin production in PD [45]. Although there 
is no direct association between neuromelanin, threo-
nine, glycine, and serotonin, this finding shows that age 
dependent mechanisms must be expected in PD. The 
fact that glycine, serine and threonine metabolism have 
a remarkable age-dependence only in PD patients sug-
gests that this metabolic pathway might be associated 
with the neurodegenerative process typical of PD. Cho-
line is the metabolic product of glycine, serine and threo-
nine metabolism and exhibits a striking age dependence 
only in PD subjects, as mentioned above. Abnormal 
choline transport and metabolism have been implicated 
in several neurodegenerative disorders. It is an essential 
nutrient for all cells because it plays a critical role in the 
synthesis of the membrane phospholipid, as well as in 
the synthesis of the neurotransmitter acetylcholine. Its 

The table contains the association of each element to the respective principal component  f1,  f2, or  f3 (if significant). C indicates the ratio between the concentration of 
the metabolite in PD and HC: values higher or lower than 1.0 indicates, respectively, elevated or decreased metabolite level in PD. The asterisk (*) indicates parameters 
validated with  OPLS.  Parameters in bold are additionally cross-validated with PCA. The complete list of Triglycerides is in the Additional file 1: Table S2. We show here 
only these Triglycerides cross-validated with PCA

Table 2 (continued)

Type Name fi C Name fi C Name fi C

Triglycerides (16:0_35:3) 0 1.2* (18:2_31:0) 0 1.2* (18:2_35:1) 0 1.3*
Trihexosyl ceramides (d18:1/16:0) 1.1* (d18:1/18:0) 1.1* (d18:1/24:1) 1.1*

(d18:1/26:1) 1.1*

Vitamins Choline 2 0.8*
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deficiency affects the expression of genes involved in cell 
proliferation, differentiation, and apoptosis, and it has 
been associated with liver dysfunction and cancer [46]. 
Indirect evidence of the association of glycine metabo-
lism to age is supported by a series of independent 

results. By comparing young and old human fibroblasts it 
was found that epigenetic downregulation of the glycine-
C-acetyltransferase (GCAT) and serine hydroxymethyl-
transferase 2 (SHMT2) genes involved in mitochondrial 
glycine synthesis correspond to the aging-related loss of 

Fig. 2 The OPLS model with 3 orthogonal and 1 predictive components can distinguish between PD and HC with an AUC in the range (0.97, 1.0) at 
a 95% confidence level (A). The principal component analysis applied to the significant metabolic parameters with VIP > 1 identifies 5 components 
expressing up to 80% of the total variance. In particular,  f0,1,4 does not exhibit any age dependence (B),  f2 exhibits a age correlation only for PD 
patients (C) and  f3 exhibits a age correlation only for HC subjects (D). Sphingomyelin (E), Choline (F) and Hexadecanoyl-carnitine (G) are among the 
main contributions to the three principal components



Page 10 of 14D’Ascenzo et al. Cell & Bioscience          (2022) 12:102 

Fig. 3 Pathway analysis. The box plots of 8 significant metabolomic parameters validated in OPLS reveal a difference of the concentration between 
PD and HC subjects (A). An enrichment analysis verifies that the selected parameters can be associated with the biosynthesis of unsaturated fatty 
acids, the tryptophan metabolism and the glycine, serine and threonine metabolism (B). We verified that the metabolites composing the first and 
the third pathway are correlated with age only in HG and PD subjects, respectively
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cellular respiration. Interestingly, the phenotype of aged 
cells is restored back to young cells by adding glycine to 
the culture media [47, 48]. The role of serine synthesis 
in age-related diseases has been intensively studied. It 
has been shown that serine can directly affect lifespan 
through metabolic regulation [49].

Our results also open new possible exploration path-
ways in the relationship between PD and other chronic 
neurodegenerative diseases, such as Alzheimer’s Disease 
(AD). Glycine, serine, and threonine metabolism is in 
fact one of the six metabolic pathways that distinguish 
HC from AD patients [50]. Furthermore, metabolomic 
analysis has recently shown that the cognitive impair-
ment due to post-traumatic brain injuries is associated 
with aberrations in glycine, serine and threonine metabo-
lism [51]. When it comes to age dependency, preclinical 
studies may provide indirect evidence. A recent metabo-
lomics analysis was performed on triple transgenic AD 
(3xTg-AD) 2- and 6-month-old mice. Relevant metabo-
lites were identified following a statistical analysis like the 
one presented in this paper. Glycine, serine and threonine 
metabolism appeared as a significant metabolic path-
way in the 6-month-old mice but not in the 2-month-old 
mice [52]. An imbalance between excitability (aspartate 
and glutamine) and inhibition (GABA and Glycine) may 
be a signature of AD. While this finding may suggest a 
dependence of glycine, serine and threonine metabolism 
on the progression of the disease, it is not in direct rela-
tionship with age.

More suggestive implications of our results in the inti-
mate connections between AD and PD may be found 
with a deeper understanding of the spleen to brain con-
nection [53]. The splenic nerve connects to the vagus 
nerve, which is connected to the brain stem. In a metab-
olomic study on AD mice models, it has been observed 
that impaired glycine, serine and threonine pathways 
were correlated with the increase in spleen size of AD 
mice at 6 months of age and in control mice at an age of 
24  months. More interestingly, the age dependence of 
glycine, serine and threonine pathways does not exhibit 
any difference between healthy controls and AD after 
24  months, therefore suggesting the absence of any age 
dependency at a later stage of the disease [54]. Follow-
ing this observation, although our results enhance for the 
first time to our knowledge a clear age-dependence of the 
glycine, serine and threonine metabolic pathway in PD, 
it will be interesting to understand the strength of this 
effect at later stages of the disease.

Biosynthesis of fatty acids correlates with age 
only in healthy subjects
As mentioned above, the metabolites identified in this 
study support the strict relationship between PD and 
lipids. Alterations in the biosynthesis of fatty acids are 
not only indicative of a mitochondrial disfunction, but 
also of possible processes of mitophagy and apopto-
sis implied by the development of PD [55]. It has been 
observed how the integration of fatty acids omega-3 have 
a neuroprotective action in a model of hemiparkinsonism 
[56]. The effect of age on the biosynthesis of unsaturated 
fatty acids in the HC group is clearly connected with the 
emerging role of lipid metabolism [57]. For instance, age 
correlation of lipids and fatty acids has been found in the 
analysis of plasma samples from a cohort of 269 individu-
als [58]. The observation of a different age correlation 
between HC and PD agrees with other findings. By way 
of example, aldosterone, pantothenic acid, and Nacetyl-
l-methionine were associated with age in HC; however, 
only 1 metabolite FFA 12:0 showed association with age 
in PD [59]. Therefore, the absence of correlation in PD 
patients may indicate an already compromised metabo-
lism and needs further investigation.

Tryptophan metabolism characterizes PD but does 
not correlate with age
The role of tryptophan in PD is well-documented. Par-
ticularly kynurenine, a key intermediate in the break-
down of tryptophan and formation of nicotinamide 
adenine dinucleotide (NAD +) via the kynurenine path-
way (KP), is involved in a variety of physiopathological 
processes and diseases—including cancer, autoimmune 
diseases, inflammatory diseases, neurologic diseases 
and psychiatric disorders [60]. KP metabolites, such as 
quilinolinic acid, cause neurotoxicity and consequently 
neuronal apoptosis and neurodegeneration, while oth-
ers, such as the kynurenic acid, act as neuroprotectant. 
Furthermore, excess levels of quinolinic acid lead to the 
formation of metabolite assemblies that causes ∝-synu-
clein aggregation, with consequent neuronal toxicity 
and PD [61]. Metabolites associated with tryptophan 
metabolism also modulate inflammation, regulate energy 
homeostasis and control mental health [62]. PD patients 
show lower kynurenic acid and higher quinolinic acid 
levels compared to HC, especially in advanced stages of 
the disease [63]. When it comes to other neurodegenera-
tive diseases, tryptophan metabolism has been found in 
significant relationship with both AD and Mild Cognitive 
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Impairment (MCI) progression [64]. Contrary to previ-
ous studies exhibiting a robust association of tryptophan 
metabolism with aging [65], we did not observe any sig-
nificant age dependency.

Conclusion
In conclusion, the targeted analysis of the blood metab-
olome proposed in this paper allowed to find specific 
age-related metabolites and metabolic pathways. The 
predictive OPLS model developed in this paper has an 
excellent discrimination power between PD and HC and 
offers a promising set of blood biomarkers for a personal-
ized age-dependent approach to the early PD diagnosis.
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