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Abstract 

Background: Changes in soluble amyloid‑beta (Aβ) levels in cerebrospinal fluid (CSF) are detectable at early preclini‑
cal stages of Alzheimer’s disease (AD). However, whether Aβ levels can predict downstream AD pathological features 
in cognitively unimpaired (CU) individuals remains unclear. With this in mind, we aimed at investigating whether a 
combination of soluble Aβ isoforms can predict tau pathology (T+) and neurodegeneration (N+) positivity.

Methods: We used CSF measurements of three soluble Aβ peptides (Aβ1–38, Aβ1–40 and Aβ1–42) in CU individuals (n 
= 318) as input features in machine learning (ML) models aiming at predicting T+ and N+. Input data was used for 
building 2046 tuned predictive ML models with a nested cross‑validation technique. Additionally, proteomics data 
was employed to investigate the functional enrichment of biological processes altered in T+ and N+ individuals.

Results: Our findings indicate that Aβ isoforms can predict T+ and N+ with an area under the curve (AUC) of 0.929 
and 0.936, respectively. Additionally, proteomics analysis identified 17 differentially expressed proteins (DEPs) in 
individuals wrongly classified by our ML model. More specifically, enrichment analysis of gene ontology biological 
processes revealed an upregulation in myelinization and glucose metabolism‑related processes in CU individuals 
wrongly predicted as T+. A significant enrichment of DEPs in pathways including biosynthesis of amino acids, glycoly‑
sis/gluconeogenesis, carbon metabolism, cell adhesion molecules and prion disease was also observed.

Conclusions: Our results demonstrate that, by applying a refined ML analysis, a combination of Aβ isoforms can 
predict T+ and N+ with a high AUC. CSF proteomics analysis highlighted a promising group of proteins that can be 
further explored for improving T+ and N+ prediction.
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Background
Alzheimer’s disease (AD) is the most prevalent neurode-
generative disease worldwide [1]. Its main neuropatho-
logical features involve the deposition of two proteins, 

amyloid-β (Aβ) and tau, into insoluble aggregates in the 
brain [2, 3]. Indeed, the most accepted AD theoretical 
model suggests that Aβ dysmetabolism triggers a cascade 
of downstream pathological events, including tau pathol-
ogy, synaptic dysfunction, and neurodegeneration, which 
leads to cognitive decline and, ultimately, to dementia [4, 
5].

This theoretical model relies on data derived from 
cross-sectional and longitudinal multicentric studies 
using multiple biomarkers. Currently, AD biomarkers are 
divided into two main classes: biofluid-based [blood and 
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cerebrospinal fluid (CSF)] and neuroimaging [magnetic 
resonance imaging (MRI) and positron emission tomog-
raphy (PET)] [6]. These biomarkers constitute the basis of 
the National Institute on Aging-Alzheimer’s Association 
(NIA-AA) Research Framework proposed for clinical 
studies, which adopted the A/T/(N) system for amyloid, 
tau, and neurodegeneration biomarkers [7]. In each cat-
egory, biomarkers are dichotomized to indicate a normal 
or abnormal status [7].

Importantly, this system relies on the amyloid cascade 
hypothesis, i.e., the linear chain Aβ positivity (A+) → tau 
positivity (T+) → neurodegeneration positivity (N+) → 
cognitive symptoms [4, 5]. However, around 30% of cog-
nitively unimpaired (CU) individuals are A+ but do not 
present any other AD pathological features [8–10]. Thus, 
A+, usually indexed by CSF Aβ1–42 or PET, does not infer 
per se if an individual presents or will develop tau pathol-
ogy or neurodegeneration. Therefore, it is clear that other 
biological processes are also critical in the progression 
toward clinical symptoms.

In this study, we asked (i) whether a combination of 
Aβ isoforms, measured in the CSF, would be capable of 
predicting downstream pathological biomarkers and (ii) 
what biological processes are related to an increase in Aβ 
isoforms’ prediction power over downstream AD pathol-
ogy. To answer these inquiries, we aimed at predicting 
T+ and N+ using a combination of demographics and 
Aβ isoforms levels in the CSF (Aβ1–38, Aβ1–40, and Aβ1–

42) as input features in machine learning models (ML). 
We also evaluated whether CSF proteomic analyses could 
reveal altered biological processes heterogeneity in indi-
viduals wrongly classified in ML models.

Methods
ADNI description
Data used in this article are available at the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). ADNI is a longitudinal multicentric study 
launched in 2004, as a result of a public-private partner-
ship, including the Foundation for the National Institutes 
of Health and the National Institute on Aging alongside 
contributors from many other sources. The study is cur-
rently in its 4th phase (ADNI1, ADNI GO, ADNI2, and 
ADNI3) and has recruited over 2300 participants in 
North America, to develop clinical, imaging, genetic, and 
biochemical biomarkers for the early detection and track-
ing of AD. More information on the study design can be 
found in adni.loni.esc.edu/about/.

Eligibility criteria
In this study, data from 318 CU subjects were collected 
from ADNI1 and ADNI2 database. Specific criteria for 

inclusion in this study were the availability of CSF lev-
els of Aβ1–38, Aβ1–40, and Aβ1–42 proteins measured by 
2D-ultra-performance liquid chromatography-tandem 
mass spectrometry (2D-UPLC-MS/MS). ADNI’s inclu-
sion and diagnostic criteria have been described else-
where [11].

CSF biomarker collection and analysis
CSF Aβ1–38, Aβ1–40, and Aβ1–42 peptide levels were meas-
ured using the 2D-UPLC-MS/MS method  (Waters® 
XEVO-TQ-S), which had been previously described 
[12] and has been recently revalidated. This updated 
technique has been recognized as an accepted analyti-
cal reference by the Joint Committee for Traceability 
in Laboratory Medicine (JCTLM), in whose database it 
was published under the JCTLM Identification Number 
C12RMP1. For defining T+ and N+, p-tau (Thr-181) 
and t-tau levels used in this study were measured by the 
 Elecsys® immunoassay, with T+ defined as CSF p-tau 
(181-Thr) > 19.2 pg/mL and N+ defined as CSF t-tau > 
242 pg/mL [13]. Data for the 2D-UPLC-MS/MS and 
 Elecsys® methods are available, respectively, at the ADNI 
database under the file names “UPENNMSMSABETA.
csv” and “UPENNBIOMK9_04_19_17.csv”.

Statistical analysis
All statistical analyses were performed in GraphPad 
Prism 8. Data are expressed as mean ± standard devia-
tion (SD). Normality was evaluated using histograms and 
quantile plots. Because samples did not have Gaussian 
distributions, comparisons between groups were carried 
out using MannWhitney test. P-values of less than 0.05 
were reported as statistically significant.

Machine learning framework
We developed a ML framework that combines multiple 
techniques and models to predict T+ and N+ with the 
use of CSF Aβ isoform levels, demographic informa-
tion and APOE ɛ4 status. The framework was coded in 
Python (version 3.6.8, https:// www. python. org/), using 
the scikit-learn (version 0.20.2, https:// scikit- learn. org/) 
and xgboost (version 0.81, https:// xgboo st. readt hedocs. 
io/) libraries. The supervised ML algorithms used in our 
framework are composed of Logistic Regression, Naive 
Bayes, k-Nearest Neighbors (kNN), Support Vector Clas-
sifier (SVC), Decision Trees, Random Forest, Gradient 
Boosting, XGBoost, and AdaBoost.

As input features for our framework, we used Aβ pep-
tide levels (Aβ1–38, Aβ1–40, and Aβ1–42), demographic 
information (age, sex and years of education), and APOE 
ɛ4 status. For feature selection, we evaluated all possible 
feature combinations, generating 1023 subsets. For each 
feature subset, we performed the nested cross-validation 

https://www.python.org/
https://scikit-learn.org/
https://xgboost.readthedocs.io/
https://xgboost.readthedocs.io/
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(CV) technique. Here, we used the nested CV since we 
needed to train different ML models together with its 
hyperparameter optimization. The nested CV has an 
inner CV loop nested in outer CV. The inner loop is 
composed of a 2-fold CV, and it is responsible for model 
selection and hyperparameter tuning, which is similar to 
a validation set. The outer loop, however, is composed 
of a 5-fold CV and it is used for error estimation, as a 
test set. The nested cross-validation uses the area under 
de curve (AUC) metric to select the best hyperparam-
eters and models. Then, an independent test set is used 
to test the overall performance of the best model and to 
generate the AUC result. The hyperparameters evaluated 
for each ML algorithm used in this work are shown in 
Table  1. After obtaining the AUC results for tuned ML 
algorithms with the nested cross-validation, only the 
model that presented the best performance is chosen for 
each feature subset. Among all these models, we selected 
the best one and then extracted the AUC for the inde-
pendent test set.

CSF proteomics analysis
Processed CSF proteomics data were collected from the 
ADNI database. Samples were measured using the LC/
MS-MRM method [12]. Proteins and peptides were 
selected based upon their previous detection in CSF, rel-
evance to AD, and previous results from the Rules Based 

Medicine (RBM) multiplex immunoassay analysis of 
ADNI CSF. The final MRM panel consisted of 567 pep-
tides representing 221 proteins. From these 567 peptides, 
320 were detectable in > 10% of ADNI samples and are 
available in the file “CSFMRM.csv”.

From the previously included CU individuals, only 
76 presented CSF proteomics data in the ADNI data-
base and were included in further analyses. CSF prot-
eomics analysis was performed comparing T− (n = 55) 
and T+ (n = 21) individuals and N− (n = 57) and N+ 
(n = 19). All proteomic analyses were implemented in 
an R statistical environment. Differentially expressed 
analysis was computed for T−/T+ and N−/N+ groups 
independently, using the LIMMA (version 3.46.0) pack-
age [14], and considering FDR-adjusted p-value < 0.05 as 
differentially expressed proteins (DEP) criteria. Finally, 
functional enrichment analyses of gene ontology (GO) 
biological processes and KEGG pathways were computed 
and visualized using the clusterProfiler (version 3.18.1) 
and Goplot (version 1.0.2) packages [15, 16].

Results
Sample characteristics
We included 318 CU individuals from ADNI, whose 
CSF had been analyzed with 2D-UPLC-MS/MS. Charac-
teristics of the ADNI cohort and the different A, T, and 
N status of samples are provided in Table 2. Population 
characteristics were compared between positive and 

Table 1 Hyperparameters evaluated for the machine learning models

kNN: k-Nearest Neighbors; SVC: Support Vector Classifier

Algorithm Fixed parameters Iterated parameters

Logistic Regression solver: lbfgs
max_iter: 250
penalty: l2

C: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]

Naive Bayes – ‑

kNN algorithm: ball_tree
leaf_size: 50

n_neighbors: [1,2,3,4,5,6,7,8,9]
p: [1,2]

SVC – for kernels: [rbf, poly, sigmoid]
C: [−4, −3, −2, −1, 0, 1, 2, 3]
for kernel: linear
gamma: [0.00001, 0.0001, 0.001, 0.01, 0.1]
C: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]

Decision Trees – max_depth: [1,2,3,4,5,6,7,8,9]
criterion: [gini, entropy]

Random Forest – max_depth: [3,4,5,8,10]
n_estimators: [5, 20, 50, 100, 200, 500, 1000]

Gradient Boosting – max_depth: [3,4,5,8,10]
leargning_rate: [0.01, 0.05, 0.1, 0.2]
n_estimators: [5, 20, 50, 100, 200, 500, 1000]

XGBoost – max_depth: [6,7,8]
leargning_rate: [0.01, 0.025, 0.05, 0.075, 0.1]
n_estimators: [5, 20, 50, 100, 200, 500, 1000]

AdaBoost – learning_rate: [0.25, 0.5, 1.0, 1.25, 1.5]
n_estimators: [20, 50, 100, 150, 200]
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negative group status for each of the above-mentioned 
biomarker categories. A+ and T+ showed significantly 
more APOE ɛ4 carriers than Aβ negative (A−) and tau 
negative (T−) groups. As already observed in previous 
studies, APOE ɛ4 carriers are associated with decreased 
Aβ1–42 and elevated p-tau in the CSF [14, 15]. T+ and 
N+ presented elevated age, when compared with T− and 
neurodegeneration negative (N−) groups, respectively. 
No significant differences were observed in sex, years of 
education, Mini-Mental State Examination (MMSE), and 
Alzheimer’s Disease Assessment Scale-Cognitive Sub-
scale (ADAS-Cog) among groups.

Changes in Aβ soluble isoforms in T+ and N+ CU 
individuals
Figure 1 compares Aβ isoform levels and their respective 
ratios between T+ and T− (Fig.  1a), and N+ and N− 
(Fig. 1b). When comparing T status, T+ group presented 
higher levels of Aβ1–38 (Fig. 1c, T− = 1764 ± 496.1 pg/
mL, T+ = 2411 ± 566.95 pg/mL, p < 0.0001) and Aβ1–40  
(Fig. 1d, T− = 7617 ± 2052 pg/mL, T+ = 10,424 ± 2529 
pg/mL, p < 0.0001). Additionally, a decrease in Aβ1–

42/Aβ1–40 (Fig. 1f, T− = 0.1749 ± 0.05, T+ = 0.1381 ± 
0.06, p < 0.0001) and Aβ1–42/Aβ1–38 ratios (Fig.  1 g, T− 
= 0.7610 ± 0.22, T+ = 0.6014 ± 0.25, p < 0.0001) was 
observed in T+ individuals. However, we did not observe 
any significant difference in Aβ1–42 levels (Fig. 1e, T− = 
1353 ± 559.4 pg/mL, T+ = 1492 ± 784 pg/mL, p = 0.41) 
and Aβ1–40/Aβ1–38 ratio (Fig. 1 h, T− = 4.354 ± 0.42, T+ 
= 4.329 ± 0.35, p = 0.60) between T+ and T− groups.

For N+ individuals, Aβ1–38 (Fig.  1i, N− = 1760 ± 
469.6 pg/mL, N+ = 2503 ± 567.2 pg/mL, p < 0.0001), 
Aβ1–40 (Fig. 1j, N− = 7593 ± 1945 pg/mL, N+ = 10,838 
± 2503 pg/mL, p < 0.0001), and Aβ1–42 (Fig.  1k, N− = 
1328 ± 565.1 pg/mL, N+ = 1575 ± 778.8 pg/mL, p = 
0.03) measures were significantly elevated when com-
pared to N−, along with a decrease in Aβ1–42/Aβ1–40 ratio 

(Fig. 1l, N− = 0.1720 ± 0.05, N+ = 0.1411 ± 0.05, p < 
0.0001) and Aβ1–42/Aβ1–38 ratio (Fig.  1m, N− = 0.7483 
± 0.23, N+ = 0.6146 ± 0.25, p < 0.0001). By contrast, 
Aβ1–40/Aβ1–38 ratio (Fig. 1n, N− = 4.350 ± 0.41, N+ = 
4.336 ± 0.35, p = 0.78) does not differ between N+ and 
N− groups.

To test whether single Aβ isoforms or its ratios can 
predict downstream AD pathological processes in CU 
individuals, we used logistic regression models. The AUC 
results for predicting T+ and N+ individuals are shown 
in Table 3. Among all results, Aβ1–38 and Aβ1–40 seem to 
be the most reliable features to predict T+, with an AUC 
of 0.811 for both Aβ isoforms. For predicting N+, Aβ1–38 
and Aβ1–40 showed similar results, with AUCs of 0.847 
and 0.855, respectively. On the other hand, Aβ1–42 pre-
sented an AUC of 0.580 for predicting N+ and 0.529 for 
T+.

Machine learning framework
Aiming at better predictive models, we proposed a ML 
framework, which is presented in Fig.  2. Aβ isoforms 
in the CSF (Aβ1–38, Aβ1–40, and Aβ1–42; measured by 
2DUPLCMS/MS), APOE ɛ4 carrier status, and demo-
graphic information (age, sex, and years of education) 
were used as input features. Besides, for feature genera-
tion, Aβ isoforms were used either alone or combined 
in ratios (Fig.  2a). In the feature subset generation step 
(Fig. 2b), all possible combinations of features were cre-
ated (1023 different subsets). Then, for each subset, two 
models were selected using the nested CV technique 
(Fig.  2c): one for T+ prediction and another to predict 
N+ (Fig. 2d).

In our ML framework, to choose the best model for 
each subset to classify T+ and N+, we evaluated the 
use of the following ML algorithms: Logistic Regression, 
Naïve Bayes, kNN, SVC, Decision Trees, Random Forest, 

Table 2 Sample characteristics

CU: Cognitively Unimpaired; A+: Amyloid-beta positive; A−: Amyloid-beta negative; T+: Tau positive; T−: Tau negative; N+: Neurodegeneration positive; N−: 
Neurodegeneration negative; y: year; MMSE: Mini-Mental State Examination; ADAS-Cog: Alzheimer’s Disease Assessment Scale-Cognitive subscale. Statistical 
differences for numerical characteristics were tested using t test. Statistical differences for sex and APOE status were tested using Fisher’s exact test. (*p < 0.05, **p ≤ 
0.01, ***p ≤ 0.001)

 a significantly different from A−, b significantly different from T−, c significantly different from N−

Characteristic CU A− A+ T− T+ N− N+

Number of individuals 318 60 50 52 58 67 43

Sex (% female) 50% 51.67% 48% 50% 50% 50.75% 48.84%

Age (y) 75.66 ± 5.22 75.37 ± 5.67 76.01 ± 4.67 73.87 ± 4.54 77.26 ± 5.32b*** 74.46 ± 4.66 77.52 ± 5.55c**

Education (y) 15.73 ± 2.83 15.42 ± 2.68 16.1 ± 2.99 15.77 ± 2.77 15.69 ± 2.91 15.57 ± 3.1 15.98 ± 2.37

MMSE 29.08 ± 1.03 28.98 ± 1.1 29.2 ± 0.95 29.13 ± 0.93 29.03 ± 1.12 29.01 ± 1.05 29.19 ± 1.01

ADAS‑Cog 6.42 ± 2.92 6.09 ± 2.91 6.81 ± 2.92 6.18 ± 2.85 6.64 ± 2.99 6.22 ± 2.69 6.73 ± 3.27

APOE ε4 carriers (%) 24.55% 11.67% 40%a*** 15.38% 32.76% b* 19.40% 32.56%
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Gradient Boosting, XGBoost, and AdaBoost within the 
nested CV technique. For each subset, the best model 
was defined based on the model’s AUC obtained from the 
validation set. The top 1 model among the 1023 models 
(one for each subset) was evaluated using an independent 

test set and was defined as the best model to predict T+ 
or N+.

Tau pathology positivity prediction
From our proposed ML framework, 1023 tuned ML 
models were generated for predicting T+ (Additional 

Fig. 1 Aβ isoforms levels discriminate tau pathology positivity (T+) and neurodegeneration positivity (N+) in CU individuals. A T+ defined as CSF 
p‑tau > 19.2 pg/mL. B N+ defined as CSF t‑tau > 242 pg/mL. C Aβ1−38, D Aβ1−40 and E Aβ1−42 levels for T− and T+ individuals. F Aβ1−42/Aβ1−40, 
G Aβ1−42/Aβ1−38 and H Aβ1−40/Aβ1−38 ratios for T− and T+ individuals. I Aβ1−38, J Aβ1−40 and K Aβ1−42 levels for N− and N+ individuals. L Aβ1−42/
Aβ1−40, M Aβ1−42/Aβ1−38 and N Aβ1−40/Aβ1−38 ratios for N− and N+ individuals. Boxplots are displayed as median (center line) and extend from the 
25th to 75th percentiles. The whiskers go down to the smallest value and up to the largest. Statistical differences were tested using Mann‑Whitney 
test (*p ≤ 0.05, ***p ≤ 0.001, ****p ≤ 0.0001)

Table 3                     AUC results for predicting T+ and N+ in CU individuals using single Aβ isoforms or its ratios 

T+: Tau positive; N+: Neurodegeneration positive; Aβ: Amyloid-beta

Prediction Aβ1−38 Aβ1−40 Aβ1−42 Aβ1−42/Aβ1−40 Aβ1−42/Aβ1−38 Aβ1−40/Aβ1−38

T+ 0.811 0.811 0.529 0.693 0.682 0.484

N+ 0.847 0.855 0.580 0.663 0.652 0.479
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file 1). Figure 3a shows the AUC results for predicting T+ 
horizontally ordered by AUC – SD. In Fig.  3b, the best 
10 models are ranked. Among the 10 models, all of them 
presented similar results, ranging from 0.877 to 0.887.

The top 1 model was a logistic regression model using 
Aβ1–42, Aβ1–42/Aβ1–40, Aβ1–42/Aβ1–38, Aβ1–40/Aβ1–38, and 
years of education as input features. The AUC result 
obtained for the validation set was 0.881 ± 0.024. For 
the independent test set, we achieved an AUC of 0.929 
(Fig. 3c).

Neurodegeneration positivity prediction
For N+ prediction, we generated another 1023 mod-
els using the same method (Additional file 2). The AUC 
results for the N+ predictions are shown in Fig. 3d hori-
zontally ordered by AUC – SD. The best 10 models were 
ranked and plotted on the graph represented in Fig. 3e. 
The best 10 models presented similar results, ranging 
from 0.909 to 0.915.

A kNN generated the best results, which had Aβ1–42, 
Aβ1–40, Aβ1–42/Aβ1–40, Aβ1–42/Aβ1–38, and Aβ1–40/Aβ1–38 
as input features. The AUC result for the validation set 
for this model was 0.915 ± 0.018. The independent test 
set achieved an AUC of 0.936 (Fig. 3f ).

CSF proteomics of T+ and N+ CU individuals
To address T+ and N+ CU individuals’ functional 
changes in biological processes, we performed CSF-
based proteomics analyses. A total of 112 DEPs were 
observed in the CSF of CU T+ compared to T− sub-
jects (Additional file  3). The enrichment analysis of 
GO biological processes in T+ individuals evidenced 
processes related to myelinization, synapse and neu-
rogenesis regulation, immune response, carbohydrate 
metabolism, memory and learning, and glial cell differ-
entiation (Fig. 4a). Figure 4b depicts top 20 GO terms 
enriched in T+ subjects compared to T−. To identify 
the most affected pathways related to changes in pro-
teomics profile of T+, we performed an enrichment 
analysis using canonical pathways described in the 
KEGG pathway database [17]. This revealed a signifi-
cant enrichment of 112 DEPs in 4 signaling pathways: 
“cell adhesion molecules”, “biosynthesis of amino acids”, 
“carbon metabolism”, and “prion disease” (Fig.  4c–g). 
Regarding proteomics analysis of N+, we identified 123 
DEPs when compared to N− individuals (Additional 
file  4). Of note, T+ and N+ subjects share 101 DEPs. 
Functional enrichment analyses revealed an over-
lap of enriched GO terms in N+ individuals and T+ 

Fig. 2 Machine learning framework for predicting tau pathology and neurodegeneration. A Cognitively unimpaired (CU) individual’s cerebrospinal 
fluid (CSF) levels of Aβ1–38, Aβ1–40 and Aβ1–42, demographics data and APOE ε4 status were used for feature generation. B All possible combinations 
of features were generated using the feature set. C The subsets were used for generating tuned machine learning models validated with nested 
cross‑validation aiming to (D) identify tau pathology (T+) and neurodegeneration (N+) positivity
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Fig. 3 Results for predicting tau pathology (T) and neurodegeneration (N) status. A Area under the ROC curve (AUC) results (vertical axis) for all 
1023 subsets to predict T status ordered by AUC – standard deviation (SD). B AUC results (horizontal axis) for the top 10 models (vertical axis) to 
predict T status. C ROC curve for the best model to predict T status using the independent test set. D AUC results (vertical axis) for all 1023 subsets 
to predict N status ordered by AUC – SD. E AUC results (horizontal axis) for the top 10 models (vertical axis) to predict N status. F ROC curve for the 
best model to predict N status using the independent test set
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individuals (Fig. 5a). Synapse organization, learning and 
memory processes, and APP metabolic processes are 
among the top 20 GO terms enriched in N+ (Fig. 5b). 
Interestingly, the same 4 KEGG pathways enriched for 
T+ were found enriched for N+ individuals (Fig. 5c–g).

CSF proteomics analysis for ML wrong predictions
Because Aβ isoforms predicted T+ and N+ outcomes 
with an AUC of up to 0.936, we next aimed, with a sec-
ond proteomics analysis, at identifying differences in bio-
logical processes occurring in CU individuals that were 

Fig. 4 Proteome analyses results of cerebrospinal fluid (CSF) cells between T− and T+ cognitively unimpaired (CU) individuals. A Gene ontology 
(GO) network of enriched terms were constructed from differentially expressed proteins mapping the node sizes to GO term significance and edge 
width to shared protein proportions (Jaccard coefficient). B Radial plot of top 20 enriched GO terms. C Enriched pathways obtained from functional 
enrichment of KEGG terms. D–G Pie charts of enriched KEGG pathways showing the proportion of proteins upregulated in T+ vs. T− comparison

Fig. 5 Proteome analyses results of cerebrospinal fluid (CSF) cells between N− and N+ cognitively unimpaired (CU) individuals. A Gene ontology 
(GO) network of enriched terms were constructed from differentially expressed proteins mapping the node sizes to GO term significance and 
edge width to shared protein proportions (Jaccard coefficient). B Radial plot of top 20 enriched GO terms. (C) Enriched pathways obtained from 
functional enrichment of KEGG terms. D–G Pie charts of enriched KEGG pathways showing the proportion of proteins upregulated in N+ vs. 
N− comparison
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wrongly classified by our ML model in the test set. First, 
we stratified the ML predictions for T+ in false-positive 
(n = 17), false-negative (n = 23), true-positive (n = 51), 
and true-negative (n = 147). Proteomic analyses for N+ 
prediction model was not carried out, since few wrong 
predictions were generated, leading to a small sample 
size.

We identified 17 upregulated DEPs between true-
positive and false-positive (Fig.  6a) and 67 upregulated 
DEPs between true-negative and false-negatives for T+ 
individuals (Fig. 7a). Interestingly, enrichment analysis of 
GO biological processes revealed that processes related 
to myelinization, and glucose metabolism are enriched 
when comparing false-positive and true-positive predic-
tions for T+ (Fig.  6a, b). When considering the false-
negative and true-negative predictions for T+, DEPs 
related to glucose metabolism, synapse transmission, 
gliogenesis, and axogenesis appeared among the enriched 
GO terms (Fig.  7a, b). Finally, to recognize the most 
affected pathways related to changes in proteomics pro-
file of individuals that were wrongly predicted, we per-
formed an enrichment analysis using canonical pathways 
described in the KEGG pathway database. This revealed 
a significant enrichment of DEPs in pathways including 
“biosynthesis of amino acids”, “glycolysis/gluconeogen-
esis”, “carbon metabolism”, “cell adhesion molecules”, and 
“prion disease” (Figs. 6c–g and 7c–l).

Discussion
In the present study, we demonstrated that ML models 
using combined Aβ soluble isoforms can predict down-
stream AD pathological processes, T+ and N+, in CU 
individuals with better results than Aβ isoforms inde-
pendently. In the generated models, a higher AUC was 
achieved for predicting N+ when comparing with the 
T+. Our proteomics analysis identified several biological 
processes and signaling pathways altered at pre-sympto-
matic phase of AD. These findings are especially relevant 
when considering that AD pathological processes initi-
ate around 20–30 years before the occurrence of the first 
clinical symptoms [18–22]. Finally, we identified DEPs 
among individuals wrongly classified as T+ by ML that 
can be further explored to improve prediction perfor-
mance of the models.

The notion that Aβ triggers tau hyperphosphoryla-
tion and neurodegeneration has been corroborated by 
multiple experimental studies [23–26]. In fact, Höglund 
and colleagues demonstrated that CU individuals with 
amyloidosis presented increased levels of p-tau181 and 
t-tau in the CSF [27]. However, the diagnostic value of 
Aβ1–42 has been explored in the literature delivering, 
though, only modest accuracy for AD prediction [28, 29]. 
Accordingly, here we demonstrated a poor AUC of 0.580 
for N+ and 0.529 for T+ prediction modeled using the 
Aβ1–42 isoform by itself, the most used CSF biomarker in 
the diagnosis of AD. Per se, the poorly explored isoform 
Aβ1–38 (AUC of 0.847) along with Aβ1–40 (AUC of 0.811) 

Fig. 6 Proteome analyses results of cerebrospinal fluid (CSF) cells between true positive (TP) and false positive (FP) predictions for tau pathology 
positivity (T+) in cognitively unimpaired (CU) individuals. A Gene ontology (GO) network of enriched terms were constructed from differentially 
expressed proteins mapping the node sizes to GO term significance and edge width to shared protein proportions (Jaccard coefficient). B Radial 
plot of top 15 enriched GO terms. C Enriched pathways obtained from functional enrichment of KEGG terms. D–G Pie charts of enriched KEGG 
pathways showing the proportion of proteins upregulated in TP vs. FP comparison
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were the most accurate predictors for both T+ and N+, 
respectively. In clinical studies, the Aβ1–42/Aβ1–38 ratio 
has been capable of significantly discriminating AD from 
other forms of dementia [30–32] and shown to be nega-
tively correlated with CSF p-tau levels in AD patients 
[31]. Additionally, a slight increase in Aβ1–38 levels was 
found in a disease-specific manner in the CSF of AD sub-
jects [32, 33]. Nevertheless, a meta-analysis pointed no 
significant difference in Aβ1–38 levels between AD indi-
viduals and control group after comparing eight studies 
[34]. Cullen and colleagues more recently demonstrated 
that higher CSF Aβ1–38 levels are negatively associated 
with cognitive decline and risk of developing AD [35]. In 
this context, it is evident that the potential of this isoform 
to add information in the preclinical stage of the disease 
remains under-explored.

In this work, we showed that a logistic regression 
model could predict T+ using multiple input features, 
with an AUC of 0.929. It has been demonstrated that 
Aβ dysmetabolism is capable of triggering the conver-
sion from a normal to a toxic state of tau-dependent 
synaptic dysfunction [23]. As well, a synergistic interac-
tion between Aβ and tau pathology is likely to occur in 
AD, rather than the sum of their independent effects 
[36–38]. Bilgel and colleagues showed that a higher 

baseline amyloid load in CU individuals was associated 
with steeper cognitive decline [39]. In parallel, we hereby 
demonstrated that amyloid isoforms levels can predict 
N+ in CU individuals with an AUC of 0.936 using a kNN 
model. The combination of Aβ isoforms, especially those 
including smaller Aβ isoforms, seems to help to deliver 
the best results to predict N+. Indeed, limited in vivo evi-
dence shows significant correlations between Aβ1–42 
levels in the CSF and neurodegeneration in CU individu-
als [27]. On the other hand, the importance of Aβ1–42 
isoform as a toxic amyloid specie has been extensively 
demonstrated [23–26]. In the context of isoform produc-
tion, literature indicates that Aβ1–38 is partially formed 
by cleavage of the Aβ1–42 isoform [40]. Also, it seems that 
no further cleavage of Aβ1–38 occurs, resulting in a “more 
stable” isoform of Aβ, easier to detect [40]. One could 
argue that a more prominent amyloid dysmetabolism, 
with higher rates of cleavage of Aβ1–42 into Aβ1–38, might 
be a crucial process that seems to drive tau pathology and 
neurodegeneration. However, the already described [41] 
faster turnover of Aβ1–42 might be accounting for its poor 
predictive value in our model. Accordingly, our model 
shows an important role for less explored Aβ isoforms as 
indicators of emerging tau pathology and neurodegen-
eration. In addition to CSF, AD blood  biomarkers have 

Fig. 7 Proteome analyses results of cerebrospinal fluid (CSF) cells between true negative (TN) and false negative (FN) predictions for tau pathology 
positivity (T+) in cognitively unimpaired (CU) individuals. A Gene ontology (GO) network of enriched terms were constructed from differentially 
expressed proteins mapping the node sizes to GO term significance and edge width to shared protein proportions (Jaccard coefficient). B Radial 
plot of top 15 enriched GO terms. (C) Enriched pathways obtained from functional enrichment of KEGG terms. D–L Pie charts of enriched KEGG 
pathways showing the proportion of proteins upregulated in TN vs. FN comparison
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been gaining attention in recent years [42]. Due to their 
scalability, blood biomarkers will generate large datasets 
highly suited for ML prediction models.

Aβ isoforms used in combination seems key for pre-
dicting T+ and N+, but do not completely explain all the 
aspects of AD downstream events. Thus, it is believed 
that simultaneous phenomena, that account for AD 
heterogeneity, are taking place in the brains of these 
individuals. In this context, CSF proteomics has been 
increasingly applied in the attempt to discover novel bio-
markers for AD. However, it is mainly focused in com-
paring CU and AD individuals [43, 44]. Here, we showed 
Aβ pathology-dependent changes at protein level occur-
ring in the CSF of CU individuals. Similarly, Whelan and 
colleagues performed a multiplex proteomics analysis in 
the CSF of CU A+ and A− patients and found two DEPs 
significantly altered: Chitinase 3-like protein (YKL-40) 
and SPARC-related modular calcium binding protein 2 
(SMOC2) [45]. The great number of DEPs between CU 
T+ and T− subjects identified in our study allowed the 
further determination of biological processes and sign-
aling pathways significantly enriched in these individu-
als. Additionally, significant differences in DEPs and its 
associated biological processes and signaling pathways 
were observed when comparing right and wrong ML pre-
dictions for T+. Interestingly, DEPs identified in other 
studies comparing CU and AD were also found in our 
analysis of ML wrong predictions for T+ [44]. In specific, 
YKL-40, SOD1, PKM, and glucose metabolism related 
proteins are among the DEPs found in both studies. The 
degree of similarity between studies seems to highlight 
a robust pattern of change rather than a cohort-specific 
effect. These results might shed light to key proteins that 
can be further explored to improve ML performance for 
predicting T+ and N+.

Conclusions
Our findings indicate that the use of ML models with 
Aβ isoforms as input features might help to predict indi-
viduals with AD downstream pathology. In addition, CSF 
proteomics analysis highlighted a promising group of 
proteins potentially driving tau pathology, which can be 
further explored for improving future T+ and N+ pre-
diction. Finally, the combination of methodologies used 
here—ML and proteomics—may help to further under-
stand AD pathology heterogeneity.
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