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Deficiency in steroid receptor coactivator 3
enhances cytokine production in IgE-stimulated
mast cells and passive systemic anaphylaxis
in mice
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Abstract

Background: Steroid receptor coactivator 3 (SRC-3) is a multifunctional protein that plays an important role in
malignancy of several cancers and in regulation of bacterial LPS-induced inflammation. However, the involvement
of SRC-3 in allergic response remains unclear. Herein we used passive systemic anaphylaxis (PSA) and passive
cutaneous anaphylaxis (PCA) mouse models to assess the role of SRC-3 in allergic response.

Results: SRC-3-deficient mice exhibited more severe allergic response as demonstrated by a significant drop in
body temperature and a delayed recovery period compared to wild-type mice in PSA mouse model, whereas no
significant difference was observed between two kinds of mice in PCA mouse models. Mast cells play a pivotal role in
IgE-mediated allergic response. Antigen-induced aggregation of IgE receptor (FcεRI) on the surface of mast cell activates a
cascade of signaling events leading to the degranulation and cytokine production in mast cells. SRC-3-deficient bone
marrow derived mast cells (BMMCs) developed normally but secreted more proinflammatory cytokines such as TNF-α
and IL-6 than wild-type cells after antigen stimulation, whereas there was no significant difference in degranulation
between two kinds of mast cells. Further studies showed that SRC-3 inhibited the activation of nuclear factor NF-κB
pathway and MAPKs including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 in
antigen-stimulated mast cells.

Conclusions: Our data demonstrate that SRC-3 suppresses cytokine production in antigen-stimulated mast cells as well
as PSA in mice at least in part through inhibiting NF-κB and MAPK signaling pathways. Therefore, SRC-3 plays a protective
role in PSA and it may become a drug target for anaphylactic diseases.
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Background
Mast cells play a pivotal role in IgE-dependent allergic dis-
eases such as allergic rhinitis, asthma and anaphylaxis
[1,2]. IgE antibodies and mast cells have been convincingly
linked to the pathology of anaphylaxis [3]. Aggregation of
the high affinity IgE receptor (FcεRI) on the surface of
mast cell activates a cascade of signaling events leading to
the degranulation and cytokine synthesis in mast cells.
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Mast cell exerts its effect on various IgE-dependent or
IgE-independent immune responses not only through the
release of degranules and cytokines but also through cell-
cell interaction [4]. Moreover mast cell progenitors in the
bone marrow can be induced by interleukin-3 (IL-3) to
further proliferate and differentiate into bone marrow-
derived mast cells [4,5].
Steroid receptor coactivator-3 (SRC-3/AIB1/ACTR/pCIP/

RAC3/TRAM-1) is a member of p160 coactivator family
that also includes SRC-1 and SRC-2, which interacts
with nuclear receptors and other transcription factors to
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Figure 1 Passive systemic anaphylaxis in wild-type and SRC-3−/−

mice. SRC-3+/+ (n = 5) and SRC-3−/− mice (n = 5) were sensitized with
anti-DNP IgE and DNP-HSA to induced systemic anaphylaxis as described
in methods. Passive systemic anaphylaxis was monitored by measuring
rectal temperatures after DNP-HSA challenge. Data represent the mean
rectal temperature ± SD. *p<0.05 versus SRC-3+/+ mice by t-test.
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enhance their effects on target gene transcription [6-9].
SRC-3 deficiency results in growth retardation and de-
crease of reproduction rate [10]. Besides that, it also plays
an important role in many physiological and pathologic
events such as cell growth, oncogenesis and differentiation
[11-14]. Studies showed that SRC-3 is overexpressed in
many tumors [13,15], while other studies displayed SRC-3
functions as a tumor suppressor [14,16]. Therefore, the
oncogenic or tumor suppressor effect of SRC-3 depends
on the cell context. We have previously demonstrated that
SRC-3−/− mice are highly susceptible to LPS-induced le-
thality [17] and are markedly susceptible to the lethality
caused by E. coli-induced peritonitis [18]. In addition, SRC-
3 represses the production of proinflammatory cytokines
including TNF-α, IL-1β and IL-6 through inhibiting cyto-
kine mRNA translation [17]. These results indicate that
SRC-3 can suppress inflammatory response. However, the
function of SRC-3 in allergic response and inflammation re-
mains unknown.
Anaphylaxis is a severe, systemic allergic reaction in-

volving the respiratory and cardiovascular systems, usu-
ally with additional cutaneous and/or gastrointestinal
features [19]. Traditional treatments for allergic diseases
have some limitations such as efficacy deficiency or se-
vere side effect, thus new targets are being explored
for development of new drugs. In this study, we used
SRC-3−/− mice to determine the role of SRC-3 in IgE-
mediated anaphylaxis. We found that SRC-3−/− mice
suffered severe passive systemic anaphylaxis than wild-
type mice. In addition, SRC-3 suppressed cytokine pro-
duction in antigen-stimulated mast cells at least in part
through inhibiting MAPK and NF-κB pathways. These
results demonstrate that SRC-3 plays a protective role
in passive systemic anaphylaxis.
Results
Enhanced passive systemic anaphylaxis in SRC-3−/−mice
To determine the in vivo role of SRC-3 in allergy, we exam-
ined the mast cell dependent, IgE-mediated PSA reaction,
an extreme form of allergic response [20], in SRC-3−/− and
wild-type mice. Passive systemic anaphylaxis was elicited by
injecting of 10 μg anti-DNP IgE intravenously, 24 hrs later,
mice were administrated with DNP-human serum albumin
(DNP-HSA) antigen by intravenously injection, and then
core body temperature was monitored at indicated time in-
tervals. As shown in Figure 1, the body temperature of mice
dropped after DNP-HSA injection, and a greater drop was
observed in SRC-3−/− mice compared to wild-type mice.
The recovery of body temperature began at 15 min in wild-
type mice while this event occurred at 40 min in SRC-3−/−

mice. These results suggest that the allergic reaction is
more severe in SRC-3−/− mice compared to wild-type mice
in PSA animal model.
No significant difference in passive cutaneous
anaphylaxis between SRC-3−/− and wild-type mice
To further investigate the role of SRC-3 in anaphylaxis, we
performed another allergic mouse model named passive
cutaneous anaphylaxis (PCA). In PCA, local extravasation
is induced by local injection of anti-DNP IgE and intraven-
ous injection of DNP-HSA [21]. The ears of both wild-
type and SRC-3−/− mice were intradermally injected with
anti-DNP IgE, then DNP-HSA and Evan’s blue dye were
injected 24 h later. After IgE and DNP-HSA treatment,
the vascular permeability increased to allow the Evan’s blue
dye to leak from the blood vessels. As shown in Figure 2A-
D, Evan’s blue dye leakage was observed in both SRC-3−/−

and wild-type mice. However, there was no significant dif-
ference in the extent of dye leakage between these two
kinds of mice.

No significant difference in maturation and
antigen-stimulated degranulation between SRC-3−/−

and wild-type BMMCs
To further assess the function of SRC-3 in mast cell-
mediated anaphylaxis, BMMCs were used. Mast cell pro-
genitors in the bone marrow can be induced by IL-3 to
further proliferate and differentiate into BMMCs. Mature
BMMCs express several kinds of receptors, among which
FcεRI and c-kit are most well-known [22]. Therefore,
BMMCs were identified by flow cytometric analysis for
FcεRI and c-kit expression after incubation of SRC-3−/−

and wild-type bone marrow cells with BMMC complete
medium for 5 weeks. As shown in Figure 3A, more than
98% cells expressed FcεRI and c-kit, but there was no
significant difference between SRC-3−/− and wild-type
BMMCs, indicating that SRC-3 deficiency does not affect
the development and maturation of BMMCs.
It has been demonstrated that IgE-mediated mast cell

activation and allergic response show the features of
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Figure 2 Passive cutaneous anaphylaxis in SRC-3+/+ and SRC-3−/− mice. SRC-3+/+ (n = 6) and SRC-3−/− mice (n = 6) were sensitized with
anti-DNP IgE and DNP-HSA to induce cutaneous anaphylaxis as described in methods (A-D). A, dye extravasation was observed after DNP-HSA
injection at the injection sites in the ears. Photographs of the mice were taken 90 min after DNP-HSA administration. Representative images are
shown. B, Extravasation of Evan’s blue was quantified as described in methods. Values are expressed as means + SD from three independent
experiments. C, Toludine blue staining of mast cells in the ear skin of SRC-3+/+ and SRC-3−/− mice after antigen challenge. Representative images
are shown; arrows indicate degranulated tissue mast cells. D, mast cells were quantified, values are expressed as means + SD from three
independent experiments.
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degranulation and inflammatory mediator production [23].
To determine the impact of SRC-3 deficiency on antigen-
stimulated mast cell degranulation, we measured the levels
of β-hexosaminidase, which is frequently used as a de-
granulation marker released from DNP-HSA-stimulated
BMMCs. As shown in Figure 3B, mast cells released β-
hexosaminidase after DNP-HSA treatment. However, the de-
granulation of antigen-stimulated BMMCs from SRC-3−/−

and wild-type mice showed no significant difference. This
data suggest that enhanced anaphylaxis in SRC-3−/− mice
are not due to enhanced degranulation.

Increased antigen-stimulated expression of IL-6 and
TNF-α in SRC-3−/− BMMCs
Upon stimulation, mast cells synthesize and secrete proin-
flammatory cytokines [21,24]. Cytokines such as IL-6 and
TNF-α are important for allergic inflammation mediated
by mast cell activation. To investigate whether SRC-3
could regulate cytokine production, IL-6 and TNF-α pro-
tein levels were measured in the cell supernatants of
antigen-stimulated BMMCs. As shown in Figure 4A and B,
SRC-3−/− BMMCs produced more IL-6 and TNF-α than
wild-type BMMCs after different concentrations of antigen
treatment overnight (p < 0.05). Further study showed that
the mRNA levels of IL-6 and TNF-α in SRC-3−/− BMMCs
were higher than that in wild-type BMMCs after antigen
stimulation (p < 0.05). These results indicate that SRC-3 in-
hibits cytokine production at both protein and mRNA
levels.

Activation of Syk and PLCγ1 in antigen-stimualted BMMCs
is independent of SRC-3
In mast cell, re-exposure to allergen triggers cross-linking
of IgE/FcεRI, which activates Src family protein tyrosine
kinases such as Lyn and Fyn. Lyn initially phosphorylates
Syk and then activates phospholipase (PL)Cγ1, a critical
enzyme for generation of the calcium signal for degranula-
tion [25]. We investigated the activation of Syk and PLCγ1
in antigen-stimulated BMMCs. As shown in Figure 5,
phosphorylation of Syk and PLCγ1 was induced in
antigen-stimulated BMMCs, but there was no difference
between SRC-3−/− and wild-type BMMCs. These results
are consistent with the observation that there was no dif-
ference in degranulation between SRC-3−/− and wild-type
mice.

Increased activation of IκB kinase (IKK)-IκB-NF-κB
pathway in antigen-induced SRC-3−/− BMMCs
The cross-linking of allergen-specific IgE bound to its
high-affinity receptor FcεRI results in a series of molecular



Figure 3 The degranulation of SRC-3+/+ and SRC-3−/− BMMCs. (A) Identification of BMMCs. Bone marrow cells were obtained from BALB/c
mice and cultured in BMMC-complete medium. After 5 weeks, cells were identified by flow cytometric analysis for FcεRI and c-kit expression. The
experiment was repeated for 3 ~ 5 times. Representative results are shown from three independent experiments. (B) BMMCs were stimulated with
IgE and different concentration of DNP-HSA. Degranulation was measured by assessing hexosaminidase activity in the media or cell lysates. Values
are shown as the mean + SD from three independent experiments.
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events leading to NF-κB activation and subsequent cyto-
kine production [26,27]. Phosphorylation and degradation
of IκB allow NF-κB to translocate to nucleus and to bind
to DNA to initiate gene expression. IKK is responsible for
IκB phosphorylation and plays a critical role in the initi-
ation of IKK-IκB-NF-κB cascade following FcεRI crossing
linking in mast cells [28]. Since SRC-3−/− BMMCs pro-
duced more IL-6 and TNF-α compared with wild-type
BMMCs after IgE and antigen stimulation, we explored
whether SRC-3 exerts its effect on IKK-IκB-NF-κB path-
way. As shown in Figure 6, although the phosphorylation
of IKK was unaltered, the phosphorylation of IκB and NF-
κB subunit p65 were enhanced and the degradation of IκB
was increased in SRC-3−/− BMMCs. These data demon-
strate enhanced activation of IKK-IκB-NF-κB pathway in
SRC-3−/− BMMCs.

Increased activation of MAPKs in antigen-induced
SRC-3−/− BMMCs
Given that SRC-3−/− BMMCs produced more cytokines
including IL-6 and TNF-α than wild-type BMMCs, and
activation of MAPKs such as ERK1/2, p38, and JNK are
also required for cytokine production by BMMCs in
response to antigen stimulation [25], We examined
MAPK signaling in antigen-induced SRC-3−/− and wild-
type BMMCs. As shown in Figure 7, the phosphoryl-
ation of ERK1/2, p38, and JNK was increased more in
antigen-stimulated SRC-3−/− BMMCs than that in wild-
type BMMCs. These results indicate that MAPK activa-
tion is enhanced in SRC-3−/− BMMCs.

Discussion
In this study, we found that SRC-3−/− mice suffered more
severe IgE-induced passive systemic anaphylaxis but not
passive cutaneous anaphylaxis compared to wild-type
mice, indicating a potential role of SRC-3 in anaphylaxis.
Mast cells were considered to be the important effector
cells for IgE-induced anaphylaxis. The high affinity recep-
tor for IgE (FcεRI) is critical for mast cell development
and function [29]. Cross-linking of FcεRI by antigen and
IgE results in mast cell degranulation and cytokine pro-
duction [21]. Given that both mast cell degranulation and
cytokine production contribute to the severity of IgE-
induced passive systemic anaphylaxis, whereas the severity
of passive cutaneous anaphylaxis is mainly affected by
mast cell degranulation, we hypothesized that SRC-3 may
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Figure 4 Increased antigen-stimulated IL-6 and TNF-α expression from SRC-3−/− BMMCs compared with SRC-3+/+ BMMCs. BMMCs were
pretreated with 1 μg/ml anti-DNP IgE for 4 h and then were stimulated with different concentration of DNP-HSA overnight at 37°C in 5% CO2.
(A and B) The amounts of IL-6 and TNF-α in the medium were measured using ELISA assay kits. C and D, The mRNA levels of IL-6 and TNF-α
were measured by real-time PCR. Values are shown as the mean + SD from three independent experiments. *p < 0.05.
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affect cytokine production but not degranulation by mast
cells since SRC-3 deficiency only affected IgE-induced pas-
sive systemic anaphylaxis but not passive cutaneous
anaphylaxis.
To corroborate the role of SRC-3 in IgE-dependent mast

cell activation, we obtained mouse BMMCs from SRC-3−/−

and wild-type mice and treated them with IgE/DNP-HSA.
Degranulation and cytokine production were observed in
both SRC-3−/− and wild-type BMMCs after stimulating
with IgE/DNP-HSA. However, SRC-3−/− BMMCs released
higher amounts of IL-6 and TNF-α than that from wild-
type BMMCs. Therefore, more severe passive systemic
Figure 5 SRC-3 deficiency has no effect on activation of Syk and PLCγ
treated with DNP-HSA 10 ng/ml for various times. Whole cell lysates were ana
images are shown from three independent experiments.
anaphylaxis in SRC-3−/− mice is due to increased cytokine
production in mast cells. No difference was observed in de-
granulation between wild-type and SRC-3−/− BMMCs,
explaining no significant difference in passive cutaneous
anaphylaxis between wild-type and SRC-3−/− mice.
In antigen-stimulated mast cells, Src family kinases such

as Lyn and Fyn are activated and subsequently phosphor-
ylate Syk, a central signaling molecule that can activate
the downstream signaling molecules including PLCγ1 and
MAPKs [30]. Activation of PLCγ1 can increase Ca2+ in-
flux, which is a key regulator for mast cell degranulation
[31]. Our study showed no difference in the activation of
. BMMCs were stimulated with anti-DNP IgE 1 μg/ml for 4 h, and then
lyzed by western-blotting for Syk, p-Syk, PLCγ and p-PLCγ. Representative



Figure 6 SRC-3 deficiency leads to increased activation of IKK-IκB-NF-κB pathway. BMMCs were stimulated with anti-DNP IgE 1 μg/ml for
4 h, and then treated with DNP-HSA 10 ng/ml for various times. Whole cell lysates were analyzed by western-blotting for IKK, p-IKK, IκB, p-IκB, p65
and p-p65. Representative images are shown from three independent experiments.
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Syk and PLCγ1 in antigen-stimulated mast cells, explain-
ing that there was no difference in degranulation between
SRC-3−/− and wild-type BMMCs. Activation of NF-κB and
MAPKs including ERK1/2, JNK and p38 is important for
the cytokine production in mast cells [32]. Cross-linking
of allergen-specific IgE bound to its receptor FcεRI in-
duced a series of molecular events leading to NF-κB and
MAPK activation and subsequent cytokine production
[26,27]. Since NF-κB and MAPKs including ERK1/2, JNK
and p38 are important for the cytokine production in mast
cells [32], and SRC-3−/− BMMCs produced more cyto-
kines than wild-type BMMCs, we examined whether SRC-
3 exerts its effect on NF-κB and MAPK signaling pathways.
Our results showed that the phosphorylation of IκB and
NF-κB subunit p65, ERK1/2, JNK and p38 were increased
in antigen-stimulated SRC-3−/− BMMCs as compared to
Figure 7 SRC-3 deficiency leads to increased MAPK pathway activatio
then treated with DNP-HSA 10 ng/ml for various times. Whole cell lysates w
p-p38. Representative images are shown from three independent experime
wild-type BMMCs, suggesting that SRC-3 negatively regu-
lates NF-κB and MAPK signaling pathways.
IKK is known to be responsible for the phosphorylation

of IκB and p65 and the subsequent activation of NF-κB.
However, the phosphorylation of IKK was not affected by
SRC-3 deficiency, indicating that SRC-3 inhibits the activa-
tion of NF-κB downstream of IKK. It has been shown that
SRC-3 is able to associate with IKKs to enhance or suppress
the activation of NF-κB on cellular context dependent man-
ner [14,16]. In our study, we also found that SRC-3 and
IKKβ had a physical interaction (Additional file 1: Figure
S1A). Among five functional domains of SRC-3 which in-
cludes basic-helix-loop-helix (bHLH) domain, serine/threo-
nine (S/T) domain, receptor interaction domain (RID),
CBP/P300 interaction domain (CID), and histone acetyl-
transferase (HAT) domain, S/T and HAT domains of SRC-
n. BMMCs were stimulated with anti-DNP IgE 1 μg/ml for 4 h, and
ere analyzed by western-blotting for ERK, p-ERK, JNK, p-JNK, p38 and
nts.



Table 1 Real-time PCR primers

Gene Forward primers Reverse primers

mIL-6 AACGATGATGCACTTGCAGA CTCTGAAGGACTCTGGCTTTG

mTNF-α ACGTGGAACTGGCAGAAGAG GGTCTGGGCCATAGAACTGA

GAPDH GACCACAGTCCATGCCATCAC CATACCAGGAAATGAGCTTGAC
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3 interacted with IKKβ (Additional file 1: Figure S1B).
Therefore, SRC-3 may interact with IKKβ through these
two domains to negatively regulate IKKβ activity in mast
cells in response to antigen stimulation.
It is interesting that SRC-3 could inhibit IgE-induced acti-

vation of MAPK pathway by blocking the phosphorylation
of JNK, p38 and ERK. JNK, p38 and ERK have been shown
to be able to phosphorylate multiple sites on SRC-3 [33],
implicating that JNK, p38 and ERK has the interaction with
SRC-3. Therefore, it is possible that the interaction of SRC-
3 with JNK, p38 and ERK may negatively affect the phos-
phorylation of these MAPKs by their upstream kinases.
Further studies are needed to examine this possibility.

Materials and methods
Materials
RPMI 1640, DMSO, sodium pyruvate, antibody against β-
actin and flag, anti-DNP IgE (clone SPE-7) were obtained
from Sigma Aldrich (Sigma, St Louis, MO, USA); DNP-
human serum albumin (DNP-HSA) was purchased from
Biosearch Technologies (Biosearch Technologies, Novato
CA, USA); recombinant murine SCF and IL-3 were pur-
chased from peprotech (Peprotech, Rocky Hill, NJ, USA);
anti-mouse CD117 (c-Kit)-PE, anti-mouse FcεRI-FITC,
IL-6 ELISA kit, and TNF-α ELISA kit were obtained from
eBioscence (eBioscence, San Diego, CA, USA); nonessen-
tial amino acid was purchased from Gibco (Gibco, Grand
Island, NY, USA); 2-mercaptoethanol was obtained from
AMRESCO (AMRESCO, solon OH, USA); fetal bovine
serum (FBS) was obtained from Hyclone (Thermo scien-
tific, IL, USA); antibodies against IKKβ, phospho-p38, p38,
phospho-JNK, JNK, phospho-ERK1/2, ERK1/2, p65,
phospho-p65, PLCγ1, phospho-PLCγ1 and SRC-3 were
purchased from Cell Signaling Technology (Danvers, MA,
USA); antibody against IκBα and Syk was obtained from
Santa Cruz Biotechnology (Santa Cruz, CA, USA); anti-
body against phospho-Syk was purchased from ProSci
(ProSci INCORPORATED, CA, USA).
Female SRC-3−/− mice and wild-type littermates (6–

8 weeks age) on a BALB/c background were used for all
experiments. Animals were maintained with specific
pathogen free air at a temperature between 20 and 23°C
with 12-h light and dark cycles and relative humidity of
50%. Animal experiments were performed in accordance
with the Guide for the Care and Use of Laboratory Ani-
mals. All animal experimental procedures were approved
by Animal Care and Use Committee of Xiamen University
(Protocol Number: XMULAC20120001). Every effort was
made to reduce the suffering of animals.

Methods
Preparation of bone marrow mast cells (BMMCs)
BMMCs were cultured as described with modifications
[4,5]. Bone marrow cells were obtained from mice and
cultured in BMMC-complete medium comprising RPMI
1640, 10% FBS, 100 U/ml penicillin, 100 μg/ml strepto-
mycin, 100 mM nonessential amino acids, 1 mM sodium
pyruvate, 50 μM 2-mercaptoethanol, 10 ng/ml mouse IL-
3, and 10 ng/ml mouse SCF. Nonadherent cells were
transferred to fresh complete medium once a week. After
4–5 weeks, cell purity was determined by flow cytometric
analysis for FcεRI and c-kit expression.
β-Hexosaminidase (β-HEX) release assay
β-HEX release assay was performed as previously de-
scribed with modification [5,34,35]. BMMCs were de-
prived of SCF overnight, and then sensitized in complete
RPMI 1640 with 1 μg/ml anti-DNP IgE for 4 h. Cells
were washed once in Tyrode’s buffer (130 mM NaCl,
10 mM HEPES, 1 mM MgCl2, 5 mM KCl, 1.4 mM CaCl2,
5.6 mM glucose, and 1 mg/ml BSA, pH 7.4) and resus-
pended in Tyrode’s buffer at 2 × 105 per well in 96 wells.
Then, cells were stimulated with DNP-HSA for 1 h. After
induction, cells were harvested with 1% Triton X-100, and
cell lysis or medium were mixed with p-nitrophenyl-N-
acetyl-β-D-glucosamide (1 mM). The reaction was termi-
nated by 100 μl of 0.2 M glycine (pH 10.7) after incubating
for 1 h, and OD was read at a wavelength of 405 nm.
Values are expressed as the percentage of intracellular β-
hexosaminidase released into the medium.
Cytokines assay
Measurement of IL-6 and TNF-α production by BMMCs
was performed as described with modifications [35].
BMMCs were deprived of SCF overnight, and then sensi-
tized in complete RPMI 1640 with 1 μg/ml anti-DNP IgE
for 4 h. Cells were stimulated by different concentration of
DNP-HSA overnight. The levels of IL-6 and TNF-α in
medium were measured using ELISA kits according to the
manufacturer’s instructions.
Passive systemic anaphylaxis (PSA)
PSA was performed as previously described with modifica-
tion [4,21]. Mice were injected intravenously with 10 μg
anti-DNP IgE in 200 μl PBS via tail vein. 24 h later, 1 mg
DNP-HSA in 200 μl PBS was injected intravenously. After
DNP-HSA challenge, body temperature was monitored at
various intervals using a rectal digital thermometer. Inves-
tigators were blinded to genotype during all experiments.
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Passive cutaneous anaphylaxis (PCA)
PCA was performed as previously described with modifi-
cation [21]. Mice were lightly anesthetized, the right ears
were injected intradermally with 1 μg anti-DNP IgE in
20 μl PBS, and the left ears were injected with 20 μl PBS
as control. 24 hrs later, mice were injected intravenously
with 200 μl of 1% Evan’s blue dye containing 100 μg DNP-
HSA. The mice were killed after injection with DNP-HSA,
and the ears were removed and incubated in 1 ml formam-
ide at 54°C for 48 h. Absorbance of the resulting superna-
tants was measured at 610 nm. The relationship between
Evans blue concentration and absorbance was linear, indi-
cating that the absorbance represented the quantity of
Evans blue extravasation.

Quantitative real-time PCR
Total RNA was isolated with Trizol reagent (Invitrogen) ac-
cording to the manufacturer’s instructions. The cDNA was
synthesized from 2 μg of total RNA using MMLV tran-
scriptase (ToYoBo, Shanghai, China) with random primers,
Real-time PCRs were performed using SYBR Premix ExTaq
(TaKaRa, Dalian, China). Quantification was normalized to
the amount of endogenous GAPDH. Primers used for Real-
time PCR are listed on Table 1.

Western blot analysis
Cells were lysed with lysis buffer (200 mM Tris–HCl
(pH 7.5), 1.5 M NaCl, 10 mM EDTA, 25 mM sodium
pyrophosphate,10 mM glycerolphosphate, 10 mM sodium
orythovanadate, 50 mM NaF, 1 mM PMSF, in combination
with protein inhibitor cocktail). Thirty micrograms of pro-
tein lysates of each sample was subjected to SDS-PAGE
and transferred onto nitrocellulose membranes. Blots
were incubated with the specific primary antibodies
overnight at 4°C. After being washed three times for
15 min each with TBST (TBS + 0.1% Tween20), blots were
incubated with horseradishperoxidase-conjugated second-
ary antibody (Pierce, Rockford, IL, USA) and visualized by
chemiluminescence. The band density was quantified by
densitometry using Scion Image software and normalized
to β-actin levels.

Cell transfection
Cells were transfected with the indicated plasmids by using
Calcium chloride. At 48 hours post-transfection, cells were
harvested and then used for further experiments.
Coimmunoprecipitation assay
For coimmunoprecipitation (Co-IP) assay, cells were
lysed with lysis buffer. Cell lysates were immunoprecipi-
tated by correspondent antibodies or control immuno-
globulin G (IgG). After extensive washing, precipitates
were analyzed by Western blotting.
Statistical analysis
Data were collected from several independent experi-
ments, with three replicates per experiment. All data
were analyzed with one-way ANOVA with post-Tukey’s
post test in SPSS 11.0 and p < 0.05 was considered statis-
tically significant. Bars in the graph represent standard
deviation (S.D.).

Additional file

Additional file 1: Figure S1. IKKβ interacts with SRC-3 through the S/T
and HAT domains of SRC-3. (A) Co-IP analysis of the interaction between
SRC-3 protein and IKKβ protein in 293 T cells. (B) SRC-3 interacted with
IKKβ through its S/T and HAT domains.
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